Top 10k strings from Educational Compilation 06 (19xx)(-)(ru).trd in <root> / bin / z80 / software / Sinclair Spectrum Collection TOSEC.exe / Sinclair ZX Spectrum - Compilations - Utilities & Educational & Various / Sinclair ZX Spectrum - Compilations - Utilities & Educational - [TRD] (TOSEC-v2007-01-01) /

Back to the directory listing

  30 9999999999999999
  20 V$="   wwedite otwet"
  20 V$="   wwedite nomer otweta":
  20 P;"                        ":
  20 ;"znakomitxsq!";
  20 ;"wa%e imq";
  20 ;"u@itelq!":
  20 ;"temy zada@ werno"
  20 ;"tema ";W
  20 ;"priglasi";
  20 ;"o@enx priqtno,";
  20 ;"napi%ite";
  20 ;"i navmite";
  20 ;"dlq wyhoda w men# wwedite";
  20 ;"dawajte";
  20 ;"a menq zowut";
  20 ;" prawilxno ! ":
  20 ;" newerno ! ":
  20 ;" ENTER ":
  20 ;" ENTER "
  20 ;"  N  wsego";
  20 ;"   i navmite ";
  20 ;"          ":
  20 ;"            "
  20 ;"                ":
  20 ;"                        ":
  20 ;"                                ":
  20 "normalxno!tak","dervatx!!!"
  20 "4";"DISK VERSION BY NRS SOFT";
  20 "10";"MOSCOW  1991":
  20 ", zatem";
  20 " Otli@no!! ty","prosto molodec!!"
  20 "  ploho!!"," ty ne gotow!"
  19 V$="   otwe@ajte D(d) ili N(net)":
  19 ;" m e n # ";
  19 ;"                               ";
  18 S2=S2+o(J,2
  18 S1=S1+o(J,1
  18 ;"ENTER.":
  16 ;"impulxs!":
  16 "","","","","","",""
  14 ;"potehe @as!":
  13 ;"zdrawstwujte!"
  12 )))))))))))
  11 ;"delu wremq-";
   7 "","","","",""
   6 k(I),l(I):
   6 ;"zdrawstwujte!!"
   6 ;"tema 2:";
   6 ;"tema 1:";
   6 ;"tema 1:"
   6 ;"delu wremq -";
   6 ::::::::::::
   6 99999999999999
   6 9999999999
   6 ))))))))))))
   6 )!!!!!!!!!)))
   5 999999999999
   5 ,","razdelqq ih zapqtymi.","","",""
   5 "","","","","","","","","","","",""
   4 ;"tema 2:"
   4 ;"parno  perpendikulqrny.";
   4 ;"najdite dlinu  otrezka";
   4 ;"impulxs":
   4 ;"TEMA 2:"
   4 ;"CD, esli:";
   4 ;" lelepipeda po trem ego";
   4 ;"  otwet  wwesti w wide:";
   4 ;"        (
   4 889999889999
   4 .","","",""
   4 ","","",""
   4  .","","","",""
   4    wwedite otwetN
   3 yrlf`[VQLHD@=9630-+(&$" 
   3 aws.","ploskostx,parallelxnaq","prqmoj aw,peresekaet","storonu as _togo","treugolxnika w to@ke a
   3 =20,","","
   3 ;"w granqh dwugrannogo";
   3 ;"ugla,opu&eny perpendi-";
   3 ;"ty,prowedena  ploskostx";
   3 ;"storona osnowaniq 
   3 ;"rebro ugla.";
   3 ;"prawilxnyj mnogougolx-";
   3 ;"potehe @as":
   3 ;"postroennogo se@eniq."
   3 ;"osnowaniq."
   3 ;"osnowaniq i protiwoleva-";
   3 ;"kulqry aa1 i ww1 na";
   3 ;"golxnoj prizme,u kotoroj";
   3 ;"bokowye storony  kwadra-";
   3 ;"@erez  storonu  nivnego";
   3 ;"2. najdite  diagonali";
   3 ;"1.iz to@ek a i w,leva&ih";
   3 ;"1.  w prawilxnoj %estiu-";
   3 ;"&u# ej storonu werhnego";
   3 ;" izmereniqm:
   3 ;"    najdite     plo&adx";
   3 ;"        ":
   3 999:::9999
   3 999999:::999
   3 88888888888888888888888888888888889)))))))))))))9))))))))))8888888(((((9)))))))))))))((((((88888
   3 .","najdite dlinu otrezka","ww
   3 .","       nadite dlinu","otrezka mm
   3 ,esli aw","ne peresekaet ploskostx","i esli aa
   3 ,","a storonu ws w to@ke","  w
   3 ,","         
   3 )))))))))))))@
   3 ))))))))))))))))))))
   3 ))))))))))
   3 "@erez konec a otrezka aw","prowedena ploskostx.","@erez konec w i to@ku s","_togo otrezka prowedeny","parallelxnye prqmye,","pereseka#&ie ploskostx","w to@kah w
   3 "@erez koncy otrezka aw","i ego seredinu m prowe-","deny parallelxnye prq-","mye,pereseka#&ie nekoto-","ru# ploskostx w to@kah","a
   3 "","dany storona i dwa","","ugla treugolxnika:
   3 "","","","","","","","","","","","","","","","",""
   3 "",""," dany storona i dwa","ugla treugolxnika:","
   3 " dan treugolxnik 
   3  HELLO ! WELCOME TO GEOMETRY. PRESS ANY KEY TO CONTINUE (C) 1991  RT - SOFT LAB.  
   3  .","najdite dlinu otrezka","a
   3  ,","esli 
   2 x(I),y(I):
   2 prosto molodec!!
   2 aws,","<a=40
   2 B$="6,28":
   2 B$="4,25":
   2 B$="2,1,-2":
   2 B$="14sm":
   2 A$="62.8":
   2 A$="6.28":
   2 A$="4.25":
   2 A$="2,1,-2":
   2 A$="0,0,1":
   2 ;"use@ennogo konusa";
   2 ;"u@enxe - swet,";
   2 ;"tema 3:";
   2 ;"tema 3:"
   2 ;"rasstoqniq ot to@ek A i";
   2 ;"prqmougolxnika, esli";
   2 ;"osewogo se@eniq."
   2 ;"nik,  esli  kavdyi  iz";
   2 ;"najdite dlinu otrezka";
   2 ;"lomanoj;";
   2 ;"golxnika,esli ego";
   2 ;"dwugrannyj ugol rawen";
   2 ;"a neu@enxe -";
   2 ;"TEMA 2:";
   2 ;"TEMA 1:";
   2 ;"TEMA 1:"
   2 ;"B  do  ploskosti  rawny";
   2 ;"3. skolxko  storon imeet";
   2 ;"2. radiusy osnowanij";
   2 ;"2. prqmye  AB,AC,AD po-";
   2 ;"1. prqmye  AB,AC,AD po-";
   2 ;"1. osnowanie piramidy -";
   2 ;"1. @emu rawny storony";
   2 ;" prqmougolxnogo paral-";
   2 ;" prqmougolxnogo  paral-";
   2 ;" 3.2sm i 5.3sm."
   2 ;"  otwet wwedite @erez";
   2 ;"   najdite   rasstoqnie";
   2 ;"   najdite   koordinaty";
   2 ;"        zapqtu#."
   2 ;"        ";
   2 ...","...a
   2 .","","najdite storonu 
   2 .","","","",""
   2 ,to prqmaq 
   2 ,","razdelqq ih zapqtymi.","",""
   2 )-x(I),y(I+1
   2 )-k(I),y(I-1
   2 )-k(I),l(I+2
   2 "PLANIM_30"
   2 "PLANIM_22"
   2 ","","","","","","","","","","","","","","",""
   2 ","","","","","",""
   2 ","","   V:V
   2 ","    ADD
   2 ","    ABB
   2 ","        
   2 "","najdite to@ku pere-","se@eniq treh ploskostej,","zadannyh urawneniqmi:","   1) 
   2 "","dany tri to@ki a(1,0,1),","w(-1,1,2),s(0,2,-1) .","najdite to@ku D(
   2 "","","w treugolxnike 
   2 "","","","","","","","","","","","","","","","","","","","","",""
   2 "","","","","","","","","","","","","","","","","","",""
   2 "","","","","","","","","","","","","","",""
   2 "","","","","","","","","","","","","",""
   2 "","","","","","","","","","",""
   2 "","","","","",""
   2 "",""," u treugolxnika 
   2 "",""," dany storona i dwa ","ugla treugolxnika.","najdite storonu 
   2 ""," najdite postoqnnye","
   2 "       360
   2  .","najdite storonu 
   2    wwedite otweth
   2    wwedite otwetT
   2    otwe@ajte D(d) ili N(net)T
   1 x(I)-k(I),y(I)-l(I):
   1 wpisannyj w ok-","ruvnostx osnowaniq konu-"
   1 snum=snum+1
   1 s=5:3 .","",""
   1 s=10 sm ,","aw:ws=4:5 .","",""
   1 parallelxnostx prqmyh i ploskostej .  ( @astx  1 )    1 9 9 1  g o d .    
   1 mnogougolxniki   (@astx 1)   obu@a#&ij kurs   
   1 graf24  CX
   1 graf23  CX
   1 graf22  CX
   1 graf21  CX
   1 dekartowy koordinaty i wektory w prostranstwe  ( @astx 2 )  1991 god.     
   1 aws' qwlqetsq orto-"
   1 aws","storony aw=5.1 sm ,","ws=6.2 sm , as=7.3 sm .","kakoj iz uglow","     naimenx%ij?","","  1) a  2) w  3) s",""
   1 aws","storony aw=5.1 sm ,","ws=6.2 sm , as=7.3 sm .","kakoj iz uglow","     naibolx%ij?","","  1) a  2) w  3) s",""
   1 aws na ploskostx 
   1 aplanim40B
   1 agraf40  CX
   1 aboot    B
   1 a$="36',72',108',144'":
   1 a$="12,5":
   1 [planim39B-SaQT
   1 [graf39  CX
   1 [PLANIM40BU
   1 YD=(YK-YN):
   1 XD=(XK-XN):
   1 XD*XD<YD*YD
   1 X', togda","to@ki X i X' nazywa#tsq","simmetri@nymi    otnosi-","telxno ploskosti 
   1 Wplanim38B
   1 Wgraf38  CX
   1 WPLANIM39BU
   1 V$="   otwe@ajde D(d) ili N(net)":
   1 SPLANIM38BU
   1 S .","","",""
   1 Rplanim37B
   1 Rgraf37  CX
   1 RH","","","  R - radius sfery,","  H - wysota segmenta.","","","","","",""
   1 RH","","","  R - radius cilindra,","","  H - wysota.",""
   1 R/180,A uglu w 
   1 R.uglu w 1
   1 R","","","","","","","","","","","",""
   1 PLANIM25BU
   1 PLANIM24BT
   1 PLANIM23BT
   1 PLANIM22BT
   1 PLANIM21BT
   1 Mplanim36B
   1 Mgraf36  CX
   1 MPLANIM37BU
   1 H ,","        3","H-wysota sootwetstwu#&e-","go %arowogo segmenta,","R-radius %ara","",""
   1 H   ,gde","","", " R-radius osnowaniq,"
   1 H   ,gde","     3"
   1 Gplanim35B
   1 Ggraf35  CX
   1 GPLANIM36BU
   1 Cplanim34BHE
   1 Cgraf34  CX
   1 CPLANIM35BU
   1 B$="94,2":
   1 B$="88,62":
   1 B$="75sm":
   1 B$="65,78":
   1 B$="6366,2":
   1 B$="62.8":
   1 B$="62,8":
   1 B$="60,300":
   1 B$="6.5CM":
   1 B$="6,75":
   1 B$="480sm":
   1 B$="4800":
   1 B$="4.5,1.33":
   1 B$="39sm":
   1 B$="37,5":
   1 B$="36,72,108,144":
   1 B$="35200m
   1 B$="3,66":
   1 B$="3,-1,-1,6":
   1 B$="251,2":
   1 B$="25,12":
   1 B$="22sm.":
   1 B$="2,59":
   1 B$="18,8":
   1 B$="170,190":
   1 B$="17,93":
   1 B$="15sm":
   1 B$="15CM":
   1 B$="15,6":
   1 B$="14,64":
   1 B$="130,230":
   1 B$="13/20":
   1 B$="12sm.":
   1 B$="12.5":
   1 B$="105.":
   1 B$="0.3M":
   1 B$="0.13":
   1 B$="0,028":
   1 B$="-2,3,0":
   1 B$="-2,-7,-28":
   1 B$="-2,-2,1,9":
   1 B$="-0.5,-0.5,-0.5,0.75":
   1 B$="(6,2,-2)":
   1 B$="(0,1,-2)":
   1 B$="(0,-1,3)":
   1 B$="(-1,0,3)":
   1 B$="(-1,-2,1)":
   1 B$="(-1,-2,-3)":
   1 B$=" 188":
   1 B$=" 1464":
   1 B"," parallelogramm."
   1 ABC wosstanowlen per-";
   1 A$="94.2":
   1 A$="9/2,4/3":
   1 A$="88.62":
   1 A$="8,18":
   1 A$="65.78":
   1 A$="6366.2":
   1 A$="6.75":
   1 A$="6,15":
   1 A$="4800":
   1 A$="37.5":
   1 A$="360'":
   1 A$="35200":
   1 A$="300,60":
   1 A$="3.66":
   1 A$="3,-1,-1,6":
   1 A$="251.2":
   1 A$="230,130":
   1 A$="2.59":
   1 A$="190,170":
   1 A$="17.93":
   1 A$="1464":
   1 A$="14.64":
   1 A$="12,25":
   1 A$="0.65":
   1 A$="0.13M":
   1 A$="0.028":
   1 A$="-2,3,0":
   1 A$="-2,-7,-28":
   1 A$="-2,-2,-1,9":
   1 A$="-1/2,-1/2,-1/2,3/4":
   1 A$="(6,2,-2)":
   1 A$="(0,1,-2)":
   1 A$="(0,-1,3)":
   1 A$="(-1,0,3)":
   1 A$="(-1,-2,1)":
   1 A$="(-1,-2,-3)":
   1 ?planim33B
   1 ?graf33  CX
   1 ?PLANIM34BU
   1 >0, esli t. 
   1 =8.3 sm, ","ww
   1 =8.1 sm ,"," aw:ws=11:9 .","",""
   1 =8","","wwedite zna@eniq 
   1 =7 m.","",""
   1 =6 (prawilxnyj","        %estiugolxnik)",""
   1 =4.8 dm.","",""
   1 =4.1 sm.","",""
   1 =3.6 dm, ","ww
   1 =3","   3)3
   1 =3 (rawnostoronnij","        treugolxnik).","","        
   1 =2:5 .","",""
   1 =15 sm ,"," as:ws=2:3 .","",""
   1 =1","   2)
   1 =0, esli t. 
   1 =0","   3)2
   1 =","","    =CC
   1 =","      2          2","=180
   1 =","        =
   1 <0, esli T. 
   1 ;"zwenxew dlinoj 1m, 2m,";
   1 ;"zemli,k domu,gde ee pri-";
   1 ;"zapqtu#,  na@inaq s";
   1 ;"wysoty?"
   1 ;"wysotu,@toby obxem uwe-";
   1 ;"wysota  3 m.";
   1 ;"wse bokowye rebra";
   1 ;"wpisan cilindr."
   1 ;"wnutrennih uglow rawen";
   1 ;"wne%nij";
   1 ;"wne%nih uglow wypuklo-";
   1 ;"wne%nih uglow rawen";
   1 ;"welikij cilindr,";
   1 ;"waniq cilindra,ne menqq";
   1 ;"wanii bytx kwadratom?"
   1 ;"waniem 14 m. werhnee";
   1 ;"w odin %ar dwa %ara s";
   1 ;"w 16 raz ?"
   1 ;"w   D a";
   1 ;"vatx na odnoj prqmoj?"
   1 ;"vat w odnoj ploskosti.";
   1 ;"uweli@itx wysotu cilin-";
   1 ;"uweli@itx radius osno-";
   1 ;"uweli@itsq plo&adx";
   1 ;"use@en-";
   1 ;"ugolxnoj prizme plo-";
   1 ;"uglow.";
   1 ;"u kotorogo wysota rawna";
   1 ;"trom okruvnosti,opisan-";
   1 ;"tri iz nih levatx na";
   1 ;"tretx# prqmu#,ne leva-";
   1 ;"trapecii, u kotoroj";
   1 ;"trapecii s nivnim osno-";
   1 ;"tralx-";
   1 ;"to@ki,esli oni levat";
   1 ;"tetra_dr";
   1 ;"takoj ve wysoty.";
   1 ;"storonami 9 m i 12 m.";
   1 ;"stoqnie ot to@ek  A i B";
   1 ;"stoqnie ot nego do osi."
   1 ;"stoqnie  mevdu koncami";
   1 ;"stolba,gde ona prikrep-";
   1 ;"sq po prqmoj 
   1 ;"sq li @etyrehugolxnik";
   1 ;"sostoqtx  iz   @etyreh";
   1 ;"sootwetstwenno rawny";
   1 ;"sm.,a wysota 14 sm.";
   1 ;"skolxko kubi@eskih";
   1 ;"skolxko %arikow diamet-";
   1 ;"serediny otrezka AB  do";
   1 ;"seka#&aq odnu iz _tih";
   1 ;"sD peresekatxsq?"
   1 ;"rom 1 sm movno otlitx";
   1 ;"rehugolxnika proporci-";
   1 ;"rebrom."
   1 ;"rebra rawny 9 sm."
   1 ;"raznostx proekcij  _tih";
   1 ;"rawnye 10sm i 17sm.";
   1 ;"rawny.";
   1 ;"rawny 37sm,13sm i";
   1 ;"rawny 1sm i 7sm."
   1 ;"rawny 12.5 m.";
   1 ;"rawnobedrennyj treu-";
   1 ;"rawnobedrennogo treu-";
   1 ;"rawno 1.5m, mevdu 
   1 ;"rawno 0.8m."
   1 ;"rawna 12 kw.m.";
   1 ;"rawen 150
   1 ;"rasstoqnie mevdu  
   1 ;"ramidy sowpadaet s cen-";
   1 ;"ralxnaq";
   1 ;"rallelxnom proektiro-";
   1 ;"rallelogramma pri pa-";
   1 ;"radiusami: 4 i 6 sm."
   1 ;"radius osnowaniq 5 sm.";
   1 ;"radius osnowaniq 5 dm.";
   1 ;"prqmougolxnik so";
   1 ;"prowesti @erez nih dwe";
   1 ;"prowedeny dwe naklonnye.";
   1 ;"prowedeny dwe naklonnye,";
   1 ;"prowedennogo parallelxno";
   1 ;"protiwoleva&im bokowym";
   1 ;"prizme wse rebra";
   1 ;"prewratitx w rawno-";
   1 ;"prawilxnyj mnOgougolx-";
   1 ;"prawilxnaq treugolx-";
   1 ;"pqti  zwenxew, dlinoj";
   1 ;"powerhnostx _togo paral-";
   1 ;"potehe @as";
   1 ;"polu@itxsq trapeciq?"
   1 ;"pod uglom 30'.";
   1 ;"ploskostx w to@kah a
   1 ;"ploskostx @erez tri";
   1 ;"ploskosti?"
   1 ;"ploskosti.@erez to@ki";
   1 ;"ploskosti, ne pereseka#-";
   1 ;"ploskosti osnowaniq";
   1 ;"ploskostej prowedeny";
   1 ;"ploskostej ne perese-";
   1 ;"ploskij";
   1 ;"plo&adi kruga,wpisan-";
   1 ;"plo&adi kruga,opisan-";
   1 ;"piramidy.)"
   1 ;"piramida"
   1 ;"pereseka#&ie wtoru#";
   1 ;"perese@eniq dwuh dan-";
   1 ;"pede storony  osnowaniq";
   1 ;"parallelxnye storony";
   1 ;"parallelxnye prqmye,";
   1 ;"parallelxnye plos-";
   1 ;"otwet wwedite @erez";
   1 ;"otwet okruglitx do";
   1 ;"otwe@ajte w wide 5:3";
   1 ;"ot stolba do doma?"
   1 ;"ot serediny otrezka  AB";
   1 ;"osnowaniq _togo";
   1 ;"osnowanij."
   1 ;"osnowanij naklonnyh dan-";
   1 ;"osnowanie i wysota";
   1 ;"osnowanie 120 m, a bo-";
   1 ;"osnowanie 120 m, a bo-"
   1 ;"osnowa-";
   1 ;"osi cilindra na rasstoq-";
   1 ;"oni otnosqtsq kak 4:9,";
   1 ;"onalxny  @islam 1,2,3,";
   1 ;"okta_dr"
   1 ;"okruvnostqmi s odnim";
   1 ;"okruvnostqh oboih ";
   1 ;"okruv-";
   1 ;"odnoj prqmoj?"
   1 ;"odnoj desqtoj diametra";
   1 ;"odinakowye perimetry.";
   1 ;"obxemow cilindrow.";
   1 ;"obrazu#-";
   1 ;"obrazu#&aq - 5 dm."
   1 ;"nyj ugol";
   1 ;"nyh prqmyh prowesti";
   1 ;"nyh ploskostqh.qwlqet-";
   1 ;"nyh ploskostej.";
   1 ;"ny  perpendikulqry AC i";
   1 ;"nowogo %ara ?"
   1 ;"noj prizme rasstoqnie";
   1 ;"noj okolo osnowaniq";
   1 ;"noj nasypi imeet wid";
   1 ;"noj dliny,  prowedennyh";
   1 ;"nogo w nego."
   1 ;"nogo okolo kwadrata, k";
   1 ;"nik, u kotorogo kavdyj";
   1 ;"nik,  esl
   1 ;"nii parallelogramma" ;
   1 ;"nii 4 sm ot nee."
   1 ;"neparallelxnye 13 i";
   1 ;"naq prizma ,a w prizmu";
   1 ;"naklonnyh rawna 9sm.";
   1 ;"najdite wysotu."
   1 ;"najdite rasstoqnie";
   1 ;"najdite plo&adx";
   1 ;"najdite plo&adx se@eniq,";
   1 ;"najdite otno%enie";
   1 ;"najdite obxem piramidy.";
   1 ;"najdite obxem piramidy."
   1 ;"najdite obrazu#&u#."
   1 ;"najdite krat@aj%ee ras-";
   1 ;"najdite dwugrannyj ug-";
   1 ;"najdite dliny naklonnyh,";
   1 ;"najdite dlinu";
   1 ;"najdite diagonalx";
   1 ;"naidite zna@eniq _tih";
   1 ;"na odnoj prqmoj?"
   1 ;"na 1 km nasypi ?"
   1 ;"movet li prqmaq,pere-";
   1 ;"movet  li _ta  lomanaq";
   1 ;"mogut li prqmye aw i";
   1 ;"mogut li ploskosti 
   1 ;"mogut li kakie-nibudx";
   1 ;"mogut li _ti to@ki le-";
   1 ;"mevdu prqmymi,soderva-";
   1 ;"mevdu prqmymi 
   1 ;"mevdu ploskostx# bolx-";
   1 ;"metrow zemli prihoditsq";
   1 ;"menx%ego  zna@eniq."
   1 ;"massoj 1 kg.";
   1 ;"m e n #":
   1 ;"lqrnyh ploskostqh opu&e-";
   1 ;"lomanoj."
   1 ;"lomanoj rawnqtxsq 27m?"
   1 ;"lomanaq  sostoqtx  iz";
   1 ;"llelxny ploskosti 
   1 ;"li@ilsq w 16 raz ?"
   1 ;"levat w odnoj ploskos-";
   1 ;"lena na  wysote  8m  ot";
   1 ;"lelxnom proektirowa-";
   1 ;"lelepipeda."
   1 ;"kwadrata, esli ego";
   1 ;"kruga, esli ego";
   1 ;"krepili na wysote 20m."
   1 ;"kowaq storona 100 m."
   1 ;"koncy dannogo otrezka"
   1 ;"kavdoj iz dwuh razli@-";
   1 ;"katx drugu#?"
   1 ;"kakaq iz figur imeet";
   1 ;"ka#&ej _tot otrezok,esli";
   1 ;"iz kuska ?";
   1 ;"iz dannoj to@ki estx:";
   1 ;"iz  wnutrennih  uglow";
   1 ;"ikosa_dr"
   1 ;"i tem ve centrom i";
   1 ;"i 22 sm) trebuetsq";
   1 ;"grammom?"
   1 ;"gowogo kolxca,zakl#-";
   1 ;"golxnik so storonami 6,";
   1 ;"go 9-ugolxnika?"
   1 ;"esq prqmye.movno li";
   1 ;"esli oni otnosqtsq, kak";
   1 ;"ego perimetr = 74 dm";
   1 ;"edinq#&ego koncy";
   1 ;"dra,ne menqq osnowanie,";
   1 ;"do ploskosti, ne perese-";
   1 ;"do ploskosti rawno 7.4sm";
   1 ;"dlinoj 15m protqnuta ot";
   1 ;"dlinoj 10 dm levat na";
   1 ;"diametrami 25 i 35 sm.";
   1 ;"diametr";
   1 ;"diametr uweli@itx:"
   1 ;"diamet-";
   1 ;"diagonalx rawna 12 m."
   1 ;"diagonali prizmy."
   1 ;"delu wremq - ";
   1 ;"cilindra ?"
   1 ;"cilindra 2 m,";
   1 ;"celogo."
   1 ;"cami lomanoj rawno 11m";
   1 ;"bolx%u# plo&adx ?";
   1 ;"bolx%oj";
   1 ;"bolx%aq";
   1 ;"bokowaq powerhnostx";
   1 ;"aw,esli:";
   1 ;"apofema"
   1 ;"aa1=3,ww1=4,aw=7 i";
   1 ;"aa1=3,ww1=4,a1w1=6 i";
   1 ;"a1w1=6 i aw=7 ?"
   1 ;"a1w1,esli:";
   1 ;"a i w odnoj iz _tih";
   1 ;"a ego plo&adx = 3 m
   1 ;"a ego plo&adx = 144 m
   1 ;"TEma 3:";
   1 ;"TEma 2:";
   1 ;"TEma 1:";
   1 ;"TEMA 4:";
   1 ;"TEMA 3:";
   1 ;"NUMBER TOO BIG":
   1 ;"NUMBER TO START (0-RESTART):";an
   1 ;"FILE ";r$;" NOT FOUND !"
   1 ;"F D   C"
   1 ;"D E  C F"
   1 ;"D A    B"
   1 ;"D     C"
   1 ;"C 6.2 B"
   1 ;"BD=9CM,BC=16CM,AD=5CM"
   1 ;"B      C";
   1 ;"AB=3CM,BC=7CM,AD=1.5CM"
   1 ;"A  D   B";
   1 ;"A   E B"
   1 ;"A    E B"
   1 ;"A    D";
   1 ;"A     D";
   1 ;"A     C";
   1 ;"A     B";
   1 ;"@toby obxem uweli@ilsq";
   1 ;"@etyreh zwenxew 3m,5m,";
   1 ;"@ennogo mevdu dwumq";
   1 ;"@emu rawna dlina";
   1 ;"@emu rawen radius";
   1 ;"@emu rawen diametr";
   1 ;"8 i 3.2 m."
   1 ;"7m, 11m. movet li ras-";
   1 ;"7.3  5.1";
   1 ;"6m i 8m  obrazu#t  ugol";
   1 ;"60 i 20 sm, a";
   1 ;"6 i 8 sm. wse bokowye";
   1 ;"4. kaku# @astx obxema";
   1 ;"3m, 4m?"
   1 ;"3.w prqmoj treugolxnoj";
   1 ;"3.w prawilxnoj @etyreh-";
   1 ;"3.w naklonnoj treugolx-";
   1 ;"3. wo skolxko raz";
   1 ;"3. wo skolxko raz nado";
   1 ;"3. w prqmougolxnom pa-";
   1 ;"3. w prqmom parallelepi-";
   1 ;"3. trebuetsq pereplawitx";
   1 ;"3. summa  dlin zwenxew";
   1 ;"3. najdite plo&adx kru-";
   1 ;"3. najdite otno%enie";
   1 ;"3. najdite  powerhnostx";
   1 ;"3. imeetsq kusok swinca";
   1 ;"3.  skolxko storon imeet";
   1 ;"3 m, 6 m, wysota 4 m.";
   1 ;"3 dm, 7 dm,";
   1 ;"25 sm naklonena k";
   1 ;"2.skolxko wer%in imeet";
   1 ;"2.skolxko reber imeet";
   1 ;"2.skolxko granej imeet";
   1 ;"2. wo skolxko raz nado";
   1 ;"2. w cilindr wpisana";
   1 ;"2. use@enyj konus";
   1 ;"2. obrazu#&aq konusa";
   1 ;"2. najdite plo&adx";
   1 ;"2. movno li prowesti";
   1 ;"2. movet li proekciq pa-";
   1 ;"2. movet li pri paral-";
   1 ;"2. kwadrat i romb ime#t";
   1 ;"2. dlina  otrezka, so-";
   1 ;"2. dany dwe parallelxnye";
   1 ;"2. dany dwe ne pereseka-";
   1 ;"2. AC=4M, BD=7M, CD=1M"
   1 ;"2. @etyre to@ki ne le-";
   1 ;"2. @emu rawna summa wseh";
   1 ;"2. @emu rawna plo&adx";
   1 ;"2.  ugly wypuklogo @ety-";
   1 ;"2.  movet li  zamknutaq";
   1 ;"2) romb"
   1 ;"1m,2m,3m,4m,11m?"
   1 ;"1:2,i proekcii naklonnyh";
   1 ;"13   20";
   1 ;"11.4 g/sm
   1 ;"10sm,16sm i 22sm."
   1 ;"1. wysota cilindra 6 sm,";
   1 ;"1. wysota cilindra 6 dm,";
   1 ;"1. to@ki a,w,s levat w";
   1 ;"1. to@ki a,w,s i D ne";
   1 ;"1. se@enie veleznodorov-";
   1 ;"1. rasstoqnie mevdu kon-";
   1 ;"1. radius osnowaniq";
   1 ;"1. ploskosti 
   1 ;"1. parallelogrammy awsD";
   1 ;"1. najdite plo&adx";
   1 ;"1. movno li @erez to@ku";
   1 ;"1. koli@estwo  zwenxew";
   1 ;"1. iz to@ek A i B, leva-";
   1 ;"1. dlina lomanoj _to:";
   1 ;"1. dany dwe skre&iwa#&i-";
   1 ;"1. AC=6M, BD=7M, CD=6M"
   1 ;"1.  lomanaq  sostoit  iz";
   1 ;"1)S3-S2;2)S2-S3;3)S2+S3."
   1 ;"1) w 5 raz "
   1 ;"1) w 2 raza"
   1 ;"1) kwadrat";
   1 ;"-wysota";
   1 ;","     2*SIN30
   1 ;"(ukazanie.osnowanie pi-";
   1 ;"(radiusy osnowanij 4";
   1 ;"( plotnostx swinca";
   1 ;"&u# s nimi w odnoj";
   1 ;"&imi bokowye rebra,";
   1 ;"&ih w  dwuh  perpendiku-";
   1 ;"&ej otrezok,  esli ras-";
   1 ;"&adx osnowaniq 144 kw.";
   1 ;"%ej bokowoj grani i";
   1 ;"%arowogo segmenta,";
   1 ;"%ara sostawlqet obxem";
   1 ;"#&iesq ploskosti.";
   1 ;" zdrastwujte!!"
   1 ;" wyrazite  S1  @erez S2";
   1 ;" wwedite @erez zapqtu#)"
   1 ;" wtorogo konca otrezka -";
   1 ;" wer%iny  D   parallelo-";
   1 ;" wenno rawny S1, S2, S3.";
   1 ;" weder koni@eskoj formy,";
   1 ;" utwervdenie:@erez l#bu#";
   1 ;" udalennoj   ot  centra";
   1 ;" treh drugih ego wer%in:";
   1 ;" torogo 12sm.";
   1 ;" to@nostx# do 2 znakow)"
   1 ;" to@ku  prqmoj  w prost-";
   1 ;" to@ki, simmetri@noj ej";
   1 ;" to@ki B.";
   1 ;" to@ka C  -  w to@ku D,";
   1 ;" te diametr lista."
   1 ;" talla  wy%tampowan  ci-";
   1 ;" sm i,esli na 1m
   1 ;" skolxko olify  potrebu-";
   1 ;" serediny _togo otrezka.";
   1 ;" sektor kruga imeet  ra-";
   1 ;" ronnego   treugolxnika";
   1 ;" renose to@ka A(2,1,-1)";
   1 ;" ranstwe movno prowesti";
   1 ;" rallelepipede storony";
   1 ;" radiusa R,ugla 
   1 ;" radius %ara rawen 15sm.";
   1 ;" prqmu#?"
   1 ;" pri  kotorom  to@ka A";
   1 ;" perpendikulqrnu#    ej";
   1 ;" perehodit w to@ku";
   1 ;" perehodit  w  to@ku B,";
   1 ;" pendikulqr  AD k plos-";
   1 ;" parallelxnyj  perenos,";
   1 ;" parallelepipeda."
   1 ;" otwet wwedite @erez";
   1 ;" otwerstie,  diametr ko-";
   1 ;" otrezka AB, esli:"
   1 ;" otnositelxno    na@ala";
   1 ;" ot to@ki D  do storony";
   1 ;" osnowaniq rawny 0.7m";
   1 ;" nostej %arow sootwetst-";
   1 ;" noj  powerhnosti tela?"
   1 ;" niq konusa.";
   1 ;" nej   powerhnosti  100";
   1 ;" najdite radius  osnowa-";
   1 ;" najdite polnu#";
   1 ;" na 0.8m."
   1 ;" lq#tsq diametrami treh";
   1 ;" lindri@eskij stakan di-";
   1 ;" levat:";
   1 ;" kotoraq widna iz to@ki,";
   1 ;" kosti treugolxnika.";
   1 ;" koordinat.";
   1 ;" koni@esku# powerhnostx."
   1 ;" ke ne izmenilasx,najdi-";
   1 ;" kaku#  plo&adx   imeet";
   1 ;" izwestny    koordinaty ";
   1 ;" izmereniqm:";
   1 ;" i S3.";
   1 ;" i 6.1sm."
   1 ;" i 30sm,obrazu#&aq 27.5";
   1 ;" i 2.4m, a wysota raw-";
   1 ;" gramma  ABCD,  esli";
   1 ;" gipotenuza i katety qw-";
   1 ;" etsq dlq pokraski wne%-";
   1 ;" etsq 150 grammow olify?";
   1 ;" esli izwestno:"
   1 ;" esli diametry weder 25";
   1 ;" dusow.sektor swernut w";
   1 ;" dius 3m i ugol 120 gra-";
   1 ;" dit na@alo koordinat?";
   1 ;" diagonalxnogo  se@eniq";
   1 ;" cilindri@eskoe  osewoe";
   1 ;" ametrom 25sm i wysotoj ";
   1 ;" D(1,2,0).";
   1 ;" BC,esli AD=15sm,BC=6sm."
   1 ;" B(0,1,2),    C(0,0,3),";
   1 ;" AB i to@ki C(1,1,1) -";
   1 ;" A(2,3,-1)-konca otrezka";
   1 ;" A'(1,-1,0).";
   1 ;" @emu rawna plo&adx pol-";
   1 ;" @astx  ego powerhnosti,";
   1 ;" 50sm.";
   1 ;" 3. w ploskosti YZ ? "
   1 ;" 3. kwadrat"
   1 ;" 2. okruvnostx";
   1 ;" 2. na osi Z ?         "
   1 ;" 2. A(0,1,2),B(-1,0,1),";
   1 ;" 2   4";
   1 ;" 1. w ploskosti XY ?"
   1 ;" 1. krug";
   1 ;" 1. A(-2,3,5),B(1,2,4),";
   1 ;" (plo&adx sektora kruga";
   1 ;" (otwet  wwesti  w kg s";
   1 ;" (gde neobhodimo,otwet";
   1 ;" &adx lista pri %tampow-";
   1 ;" %arow.  plo&adi powerh-";
   1 ;" %ara na 25sm?"
   1 ;" %ar radiusa 10sm imeet";
   1 ;"  perpendikulqrnye plos-";
   1 ;"  najdite    rasstoqnie";
   1 ;"  VR/& BOOTER B "
   1 ;"  BD=0.36M, BC=0.64M,";
   1 ;"  AB=0.12M, BC=0.28M,";
   1 ;"  A(2,3,2),  B(0,2,4),";
   1 ;"   w kaku# to@ku pereho-";
   1 ;"   telefonnaq prowoloka";
   1 ;"   pri parallelxnom pe-";
   1 ;"   predpolagaq, @to plo-";
   1 ;"   najdite rasstoqnie ot";
   1 ;"   najdite dlinu";
   1 ;"   najdite  koordinaty ";
   1 ;"   kakie iz _tih  to@ek";
   1 ;"   iz wer%iny  rawnosto-";
   1 ;"   iz to@ki ploskosti";
   1 ;"   iz to@ki k ploskosti";
   1 ;"   iz kruglogo lista me-";
   1 ;"   geometri@eskoe mesto";
   1 ;"   dany to@ki A(1,2,3),";
   1 ;"   dany koordinaty to@ki";
   1 ;"   dana to@ka C(1,0,-3)."
   1 ;"   dana to@ka B(0,-1,2)."
   1 ;"   dana to@ka A(1,2,3)."
   1 ;"   @emu rawno rasstoqnie";
   1 ;"    otwet wwesti w dm";
   1 ;"    najdite proekcii";
   1 ;"    najdite plo&adx";
   1 ;"    C(4,-3,6),D(7,-2,5)."
   1 ;"    C(3,-2,2),D(2,-3,1)"
   1 ;"     su&estwuet li";
   1 ;"     sprawedliwo li";
   1 ;"      A";
   1 ;"      @erez zapqtu#"
   1 ;"      3)240/
   1 ;"       naklonnyh.";
   1 ;"       3)60
   1 ;"        zapqtu#"
   1 ;"        C(4,1,0).";
   1 ;"        AD=0.2M  "
   1 ;"        AD=0.06M"
   1 ;"            ili 5/3"
   1 :planim32BAL
   1 :graf32  CX
   1 :as=2:3 .","",""
   1 :PLANIM33BU
   1 8$$8  K|AB<
   1 6planim31BF;B:<
   1 6graf31  CX
   1 6PLANIM32BU
   1 3PLANIM31BU
   1 3;","      2*SIN60
   1 3/2.","     2*TG30
   1 3,228,36,40,40,48,48,32,0,0,0,0,255,0,0,0
   1 3).","      2*TG60
   1 2planim30B,3
   1 2graf30  CX
   1 2 sm i 5 sm obrazu#t","ugol 45
   1 1991 god                    "
   1 1991 god                   
   1 /planim29B
   1 /graf29  CX
   1 /PLANIM30BU
   1 /2. zna@it","wos-rawnobedrennyj treu-","golxnik.","",""
   1 /2",""," V=(
   1 /180 .","",""
   1 .per-","waq iz _tih ploskostej","prohodit @erez prqmye as","aa
   1 .najti tretij"," ugol i dwe storony.","","     re%enie.","","   tak kak summa uglow"," treugolxnika rawna 180
   1 .menx%aq diago-","nalx parallelepipeda","rawna 7 sm.","najdite ego ob'em.","otwet wwedite w kubi-","@eskih santimetrah.","",""
   1 .@emu rawen otrezok";
   1 .","wo skolxko raz uweli-","@itsq ego ob'em?","","",""
   1 .","plo&adi diagonalxnyh se-","@enij 3m
   1 .","najdite rebro rawno-","welikogo kuba.","otwet wwedite w","santimetrah.",""
   1 .","najdite plo&adx se@eniq,","prohodq&ego @erez boko-","woe rebro i osx piramidy","(sowpadaet s osx# soot-","wetstwu#&ej polnoj ","piramidy)."
   1 .","na kakom rasstoqnii ot","osnowaniq nahoditsq","se@enie,parallelxnoe ","emu,esli plo&adx","se@eniq rawna 50 m
   1 .","@emu rawno rebro kuba?","","","","","",""
   1 .","","otwet wwedite w kwadrat-","nyh metrah.",""
   1 .","","najdite ugol 
   1 .","","","otwet wwedite w gradu-","sah,razdelqq zna@eniq","zapqtoj.","","","","",""
   1 .","","","","otwet wwedite w gradu-","sah,razdelqq zna@eniq","zapqtoj.","","","","","","",""
   1 .","","","","","","","","","","","","","","","","","","",""
   1 .","","","","","","","",""
   1 .","","","","","","",""
   1 .","","","","","",""
   1 .","","  uglom mevdu prqmoj i","ploskostx# nazywaetsq","ugol mevdu prqmoj i ee"
   1 .","","  takim obrazom,@etyreh-"," ugolxnik   levit  w "," ploskosti parallelxnyh"," prqmyh AA
   1 .","","   koordinatoj 
   1 .","","    re&enie.","ploskostx se@eniq razbi-","waet prizmu na dwe @asti","parallelxnym perenosom","odnoj iz nih sowme&aem"
   1 ."," zatem nahodim storonu 
   1 ."," summa uglow 
   1 ."," sledowatelxno, 
   1 ."," (ss' perpendikulqrna 
   1 .","   esli XX
   1 .","            2",""
   1 .","      
   1 . w itoge","summa 
   1 . sledo-","watelxno prqmaq  
   1 . po  nerawenstwu","treugolxnika  lomanaq"
   1 . koordinaty"," 
   1 . bokowaq po-"," werhnostx rawna S."
   1 .  w plos-";
   1 .  _to"," ozna@aet,  @to  AA
   1 -ugolxnoj,esli ee osno-","waniem qwlqetsq 
   1 -ugolxniki podobny."
   1 -ugolxnika"
   1 -ugolxnika s","dostato@no malymi storo-","nami.","",""
   1 -ugolxnika rawna","","       180
   1 -ugolxnika r raw-","na 180
   1 -ugolxnik","so storonoj 
   1 -ugolxnik"
   1 -ugolx-","nikow otno%eniq perimet-","row,radiusow wpisannyh","i radiusow opisannyh","okruvnostej rawny.","","   r
   1 -ugolx-","nikow ko_fficient podo-","biq rawen otno%eni#","storon,radiusow wpisan-","nyh i radiusow opisannyh","okruvnostej.",""
   1 -ugolx-","  nik.","","   treugolxnaq piramida","nazywaetsq takve tetra-"
   1 -seku&aq ploskostx"
   1 -se@enie mnogo-"," grannika ABCDA
   1 -prqmu# BB
   1 -podobny.","",""
   1 -perimetr,
   1 -linejnye razmery"," prqmougolxnogo paralle-"," lepipeda."
   1 -apofema.",""
   1 -2AB*AD","                 (ris.1)","","   BC
   1 -2,-2,1,9V
   1 -2,-2,-1,9B
   1 -2).","","    teorema dokazana.","","","",""
   1 -","ugolxnika r  rawna summe","uglow  mnogougolxnika r2","pl#s 180
   1 -","         -ugolxniki"," A
   1 - wysota, S=(2
   1 - paral-"," lelogrammy, t.k.  u nih"," protiwoleva&ie  storony"," rawny.","","","","","","",""
   1 ,w ploskosti 
   1 ,ploskostx","
   1 ,planim28B
   1 ,graf28  CX
   1 ,esli:aa1=3,ww1=4,";
   1 ,esli ugol mevdu","
   1 ,esli aw=7.5sm?"
   1 ,esli aw=6 sm ,"," as:ss
   1 ,bokowoe rebro rawno";
   1 ,a wtoraq-@erez prq-","mye wD i ww
   1 ,PLANIM29BU
   1 ,... -","zwenxqmi lomanoj.",""," lomanaq nazywaetsq pro-","stoj, esli  ona ne imeet","samoperese@enij. (to@ka","B na wtorom risunke)"
   1 ,","razdelqq zapqtymi.","",""
   1 ,","esli ugol mevdu 
   1 ,","a rasstoqnie mevdu dwumq","bokowymi granqmi 2 m .","najdite ob'em prizmy.","","otwet wwedite w m
   1 ,"," to ego ob'em wy@islqet-"," sq po formule","","","      V=
   1 ,"," perpendikulqrnaq 
   1 ,"," perpendikulqrna i 
   1 ,"," budu@i perpendikulqrna"," 
   1 ,"," a w ploskosti prqmyh"," 
   1 ,","     to   
   1 ,","        2        2","","          
   1 , sledowatelxno prqmaq","
   1 , perpendikulqrna 
   1 , dlina  kotorogo","ne bolx%e  dliny a
   1 ,  sledowa-"," telxno i ploskostej  
   1 +2AB*AD","                 (ris.2)","","","","",""
   1 +2=0","   2)2
   1 +1=0","","wwedite zna@eniq 
   1 *R","    S=
   1 *2."," takim  obrazom na (
   1 )nazywa-","#tsq  perpendikulqrnymi,","esli   kakaq-libo  plos-","kostx  (
   1 ).","","","","","","","","","","","","","","","","",""
   1 ).","","","   esli storona kwadra-"
   1 )-trehgrannyj "," ugol,(
   1 )-k(I),y(I-2
   1 ),@toby","        
   1 ),","peresekaet ih po perpen-","dikulqrnym prqmym(
   1 ),","esli izwestno,@to","wektory aw i sD rawny.","","wwedite zna@eniq 
   1 ),","esli izwestno,@to","summa wektorow aw i sD","rawna nul#.","","wwedite zna@eniq 
   1 ),"," gde 
   1 ),  perpendiku-"
   1 ))","","","",""
   1 )","ili iz %arowogo segmenta","konus udalqetsq (
   1 )","","","",""
   1 )","","",""
   1 )"," sledu#&im obrazom:"
   1 )"," nazywaetsq @islo:","","    
   1 )"," imeet koordinaty :","   
   1 )","  budut kollinearny.","","wwedite zna@eniq 
   1 )","    3","","",""
   1 )","    2","","",""
   1 )","                3","   obxem %arowogo sekto-"," ra:"
   1 ) w ","dekartowyh koordinatah","imeet wid:",""
   1 ) perehodit"," w to@ku  (
   1 ) na @islo 
   1 ) i wy-","sotoj 
   1 ) i kon-"," com w t. a
   1 ) ego"," grani.",""  
   1 )  rawno:","","","      
   1 (planim27B47
   1 (graf27  CX
   1 (YD)*XD)/YD,YN+K*
   1 (XD),YN+(K*
   1 (XD)*YD)/XD:
   1 (PLANIM28BU
   1 '.","","","","","","","","","","","",""
   1 '-ortogonalxnaq pro-","ekciq 
   1 %planim26B
   1 %graf26  CX
   1 %PLANIM27BU
   1 "wypuklye mnogougolxniki.",""," lomanaq nazywaetsq zam-","knutoj,  esli  ee  koncy","sowpada#t."," prostaq zamknutaq loma-"
   1 "wwedenie dekartowyh","koordinat w prostranstwe.","preobrazowanie figur","w prostranstwe.","prakti@eskoe zadanie.","wyhod."
   1 "waetsq bolx%im krugom,a","se@enie sfery - bolx%oj","okruvnostx#.","","     teorema","","   l#baq diametralxnaq"
   1 "ugolxnika.","","   osx piramidy-prqmaq,","soderva&aq ee wysotu.","","   apofema-wysota boko-","woj grani prawilxnoj pi-"
   1 "ugly mevdu prqmymi i","ploskostqmi.","plo&adx ortogonalxnoj pro-","ekcii mnogougolxnika.","wektory w prostranstwe.","urawnenie ploskosti.","prakti@eskoe zadanie.","wyhod."
   1 "torema kosinusow.","teorema sinusow.","re%enie treugolxnikow.","prakti@eskoe zadanie.","wyhod."
   1 "teorema:dlina lomanoj ne","menx%e dliny otrezka,so-","edinq#&ego ee koncy.","","dokazatelxstwo:","w dannoj lomanoj a
   1 "ta 100 m,to plo&adx bu-","det w gektaraX.","","","   esli storona kwadra-","ta 1 km,to plo&adx budet","w kwadratnyX kilometraX","i t.p."
   1 "stej s ploskostx# 
   1 "sa,a wer%inoj qwlqetsq","wer%ina konusa.","","   bokowye rebra takoj","piramidy qwlq#tsq obra-","zu#&imi konusa.",""
   1 "sa,a wer%inoj qwlqetsq","w
   1 "rawny:aw=ws, wo-ob&aq.","storona, ugly pri wer%i-","ne w rawny 
   1 "ramidy,prowedennaq iz ee","wer%iny.","","  SO - osx piramidy","  SP - apofema piramidy","",""
   1 "radius wpisannoj okruv-","nosti:","      CB      
   1 "radius opisannoj okruv-","nosti:","      sw        
   1 "r","e","%","e","n","i","e"," "," ","t","r","e","u","g","o","l","x","n","i","k","o","w"," "," "," "," "," "," "," "," ","1","9","9","1"," ","g","o","d"," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," " 
   1 "r rawna summe uglow mno-","gougolxnika r1:","a
   1 "proekciej na ploskostx.","","","","","",""
   1 "prawilxnye mnogogran-","     niki.","","  wypuklyj mnogogrannik","nazywaetsq prawilxnym,","esli ego grani qwlq#tsq","prawilxnymi mnogougolx-","nikami s odnim i tem ve"
   1 "postroenie ploskih se@enij.","parallelepiped.","prakti@eskoe zadanie.","wyhod."
   1 "ponqtie plo&adi, plo&adx"," prqmougolxnika.","plo&adx prostyh figur.","plo&adx kruga.","prakti@eskoe zadanie.","wyhod."
   1 "ponqtie ob'ema.","ob'em parallelepipeda.","ob'em naklonnogo ","parallelepipeda.","ob'em prizmy.","prakti@eskoe zadanie.","wyhod."
   1 "polu@ennyX @astej otno-","sqtsq kak"," (1/8):(1-1/8)=1:7","","","",""
   1 "podobnu# piramidu.","","   awsS - piramida","","   aws  - osnowanie ee","","a
   1 "podobie prawilxnyh wypuklyh","mnogougolxnikow.","dlina okruvnosti.","centralxnyj ugol i duga","okruvnosti.","prakti@eskoe zadanie.","wyhod."
   1 "ploskostx %ara qwlqetsq","ego ploskostx# simmetrii","centr %ara qwlqetsq ego","centrom simmetrii.","",""
   1 "ploskosti.","","","","","",""
   1 "planim40"
   1 "planim39"
   1 "planim38"
   1 "planim37"
   1 "planim36"
   1 "planim35"
   1 "planim34"
   1 "planim33"
   1 "planim32"
   1 "planim31"
   1 "planim30"
   1 "planim29"
   1 "planim28"
   1 "planim27"
   1 "planim26"
   1 "planim25"
   1 "planim24"
   1 "planim23"
   1 "planim22"
   1 "planim21"
   1 "piramidy rawna:","   
   1 "piramidy estx podobnye","mnogougolxniki,bokowye","grani-trapecii.","","","",""
   1 "piramida.","prawilxnye mnogogranniki.","prakti@eskoe zadanie.","wyhod."
   1 "perpendikulqrnostx","ploskostej.","rasstoqnie mevdu","skre&iwa#&imisq prqmymi.","prakti@eskoe zadanie.","wyhod."
   1 "perpendikulqrnostx prqmyh.","prakti@eskoe zadanie.","wyhod."
   1 "parallelxnye prqmye ","w prostranstwe .","parallelxnostx prqmoj i ","ploskosti .","prakti@eskoe zadanie.","wyhod."
   1 "parallelxnostx prqmyh i ploskostej .  ( @astx  1 )    1 9 9 1  g o d .     "
   1 "parallelxnostx ploskostej.","izobravenie prostranstwen-","nyh figur na ploskosti.","prakti@eskoe zadanie.","wyhod."
   1 "osnowaniq prizmy.polu@im","prqmu# prizmu,u kotoroj","osnowanie-se@enie ishod-","noj.ob'em _toj prizmy","rawen Q*
   1 "osnowaniq na wysotu:","","","   V= SH = 
   1 "osnowanie prqmogo pa-","rallelepipeda - romb,","plo&adx kotorogo 1 m
   1 "osnowanie prizmy - tre-","ugolxnik,u kotorogo odna","storona rawna 2 sm,a dwe","drugie po 3 sm.bokowoe","rebro rawno 4 sm i","sostawlqet s ploskostx#","osnowaniq ugol 45
   1 "obxem piramidy,"," obxemy podobnyh tel.","obxemy cilindra i konusa.","obxem %ara i ego @astej.","prakti@eskoe zadanie.","wyhod."
   1 "nazywa#tsq  wer%inami, a","otrezki a
   1 "naq nazywaetsq mnogougo-","lxnikom, esli  ee sosed-","nie zwenxq  ne  levat na","odnoj prqmoj."," mnogougolxnik  s 
   1 "na@alom nazywa#tsq do-","polnitelxnymi.","","   centralxnyj ugol w","okruvnosti -_to ploskij","ugol s wer%inoj w ee","centre."
   1 "moj w _toj ploskosti.","","","",""
   1 "mnogougolxniki   (@astx 1)   obu@a#&ij kurs   
   1 "mnogogrannye ugly.","mnogogrannik.","prizma.","prakti@eskoe zadanie.","wyhod."
   1 "midy,leva&ie w paral-","lelxnyh ploskostqh,nazy-","wa#tsq osnowaniqmi,os-","talxnye-bokowymi gra-","nqmi.","","  osnowaniq use@ennoj"
   1 "menx%ej 180 gradusow, i","tolxko odin.","","","   kakow by ni byl treu-"
   1 "lqrnaq prqmoj  perese@e-","niq _tih ploskostej (
   1 "lomanaq.","wypuklye mnogougolxniki.","prawilxnye mnogougolxniki.","prakti@eskoe zadanie.","wyhod."
   1 "levat w kasatelxnoj","ploskosti %ara.","","",""
   1 "kowu# powerXnostx po ok-","ruvnosti s centrom na","osi konusa.","",""
   1 "kosinus ugla mevdu plos-","kostx# mnogougolxnika i","ploskostx# proekcii.","","","  S(
   1 "izmereniq prqmougolx-","nogo parallelepipeda","3 sm,4 sm,5 sm.","esli uweli@itx kavdoe","rebro na 
   1 "izmereniq prqmougolx-","nogo parallelepipeda","15 m,50 m,36 m.","najdite rebro rawnowe-","likogo emu kuba.","","","","","","",""
   1 "grani-prawilxnye treu-","golxniki;w kavdoj wer%i-","ne shoditsq po @etyre","rebra.","","",""
   1 "golxnik, su&estwuet raw-","nyj emu treugolxnik w","dannoj ploskosti w zada-","nnom raspolovenii otno-","sitelxno dannoj poluprq-"
   1 "gogrannikow:prawilxnyj","tetra_dr,kub,okta_dr,","dodeka_dr,ikosa_dr.","","","",""
   1 "dlina  ne  bolx%e  dliny","ishodnoj i tak dalee."," w itoge pridem k otrez-","ku a
   1 "dikulqr,opu&ennyj iz","wer%iny k ploskosti","osnowaniq.","","   osx konusa-prqmaq,so-","derva&aq wysotu konusa.",""
   1 "dekartowy koordinaty i wektory w prostranstwe  ( @astx 2 )  1991 god.      "
   1 "dannoj.","","","",""
   1 "cilindr","konus","prakti@eskoe zadanie.","wyhod."
   1 "bokowaq powerhnostx","prawilxnoj piramidy raw-","na proizwedeni# polu-","perimetra osnowaniq na","apofemu.","","bokowaq powerhnostx"
   1 "aksiomy stereometrii.","nekotorye sledstwiq","aksiom stereometrii.","prakti@eskoe zadanie.","wyhod."
   1 "a otrezki,soedinq#&ie","sootwetstwu#&ie wer%iny-","bokowymi rebrami prizmy.","","","",""
   1 "a bokowye rebra 
   1 "_drom.","","   awsS - tetra_dr.","","","",""
   1 "PLANIM_24"
   1 "@islom storon i w kavdoj","wer%ine mnogogrannika","shoditsq odno i to ve","@islo reber.","","  su&estwuet pqtx tipow","prawilxnyh wypuklyh mno-"
   1 "@aetsq ot perimetra","wpisannogo w nee pra-","wilxnogo 
   1 "2. prawilxnyj mnogogran-","nik,u kotorogo grani -","- prawilxnye @etyreh-","ugolxniki i w kavdoj","wer%ine shoditsq tri","rebra - _to ....","","1)dodeka_dr.2)ikosa_dr","3)tetra_dr.  4)kub.","5)okta_dr.","",""
   1 "1.2 u prawilxnoj use@en-","noj treugolxnoj piramidy","storona bolx%ego osno-","waniq 8 sm,a menx%ego","-4 sm.bokowoe rebro ob-","razuet s osnowaniem 45
   1 "1.1 osnowanie piramidy-","-rawnobedrennyj tre-","ugolxnik so storonami","40 sm,25 sm i 25 sm.","ee wysota prohodit","@erez wer%inu ugla,","protiwoleva&ego storone","40 sm i rawna 8 sm.",""," najdite plo&adx bokowoj"," powerhnosti piramidy.",""
   1 "-i wseX otrezkow,soedi-"," nq#&iX wer%inu konusa"," s to@kami okruvnosti"," osnowaniq(obrazu#&ih).",""
   1 "- to@ka,","- prqmaq,","- ploskostx","","   aksiomy stereometrii-"," _to aksiomy planimetrii"
   1 ","wy@islqetsq po formule:",""
   1 ","wektory aw i sD byli","perpendikulqrny.","","wwedite zna@eniq 
   1 ","w metrah.","",""
   1 ","to@ku D(0,0,
   1 ","rawna 17m,a bokowye sto-","rony drugogo perpediku-","lqrny."," najdite rasstoqnie mev-"," du wer%inami treugolx-"," nikow.","",""
   1 ","ko wtoromu katetu.","","najdite ugol mevdu gipo-","tenuzoj i ploskostx#.","","otwet wwedite w gradusah",""
   1 ","kakaq iz storon","treugolxnika naimenx%aq?","",""," 1) aw  2) ws  3) as",""
   1 ","kakaq iz storon","treugolxnika naibolx%aq?","",""," 1) aw  2) ws  3) as",""
   1 ","bokowaq storona odnogo 
   1 ","(@itaetsq 'pi'):","      
   1 ","","awsS podobna a
   1 ","","","","","","","","","","","","","","","","","","","","","","","","","","","",""
   1 ","","","","","","","","","","","","",""
   1 ","","","","","","","","","","","",""
   1 ","","","","","","","",""
   1 ","","","","",""
   1 ","","","","  
   1 ","","","  esli centrom sfery","qwlqetsq na@alo koordi-","nat,to urawneniem sfery","qwlqetsq:"
   1 ","","","  R - radius osnowaniq,","","  
   1 ","","","   storony treugolxnika"," proporcionalxny sinusam"," protiwoleva&ih uglow.","","","    
   1 ",""," ots#da 
   1 ",""," nazywaetsq wektor","","    
   1 ",""," ""-""  esli  
   1 ","","  krugowoj segment-ob&aq"," @astx kruga i poluplos-"," kosti.","","","","","","","","","",""
   1 ","","   kwadrat l#boj storony"," treugolxnika rawen sum-"," me kwadratow dwuh  dru-"," gih storon bez udwoen-"," nogo proizwedeniq _tih"," storon na kosinus ugla"," mevdu nimi."
   1 "," to tretij ugol  wyrava-"," etsq @erez zadannye."
   1 "," t.e. prqmye  
   1 "," seku&ej ploskostx# 
   1 "," po teoreme sinusow.","","","","",""
   1 "," perpendikulqrny.","","    teorema dokazana"
   1 "," perpendikulqrny."
   1 "," kak protiwoleva&ie sto-"," rony parallelogrammow.",""
   1 "," estx ugol mevdu 
   1 "," ""+""  esli  
   1 ","   wektor 
   1 ","    DO=OB
   1 ","    CO=OA
   1 ","    AO=OC
   1 ","    2      2    2",""," 
   1 ","     TG
   1 ","     SIN
   1 ","     2R"
   1 ","     +(
   1 ","       3","   obxem %arowogo seg-","menta wysotoj H:"
   1 ","        P
   1 ","        2","","",""
   1 "%arowogo segmenta i ko-","nusa. %arowoj segment","dopolnqetsq konusom (
   1 "%ar.","urawnenie sfery.","prakti@eskoe zadanie.","wyhod."
   1 "%age my pridem k treugo-","lxniku a
   1 "","prawilxnyj mnogogrannik,","u kotorogo grani - pra-","wilxnye treugolxniki i w","kavdoj wer%ine shoditsq","pqtx reber _to ....","","1)dodeka_dr.2)ikosa_dr.","3)okta_dr.  4)kub.","     5)tetra_dr.","",""
   1 "","najdite radius okruv-","nosti,esli ee dlina ","rawna 94.2 .","","otwet wwedite s","to@nostx# 2 znaka.","","","","","","","",""
   1 "","najdite radius okruv-","nosti,esli ee dlina ","rawna 7.536 .","","otwet wwedite s","to@nostx# 2 znaka.","","","","","","","",""
   1 "","najdite dopolnitelxnye","ploskie ugly,znaq @to:","raznostx ih rawna 20
   1 "","najdite dopolnitelxnye","ploskie ugly,znaq @to:","odin iz nih bolx%e","  drugogo w 5 raz.","","","otwet wwedite w gradu-","sah,razdelqq zna@eniq","zapqtoj.","","","","","",""
   1 "","najdite dopolnitelxnye","ploskie ugly,znaq @to:","odin iz nih bolx%e","  drugogo na 100
   1 "","na skolxko udlinilsq by","zemnoj _kwator,esli by","radius zemnogo %ara","udlinilsq na 1 sm.","","otwet wwedite w santi-","metrah s to@nostx#","3 znaka.","","","","","","",""
   1 "","esli kavdoe rebro kuba","uweli@itx na 2 sm,to","ego ob'em uweli@itsq","na 98 sm
   1 "","dany tri to@ki a(1,0,1),","w(-1,1,2),s(0,2,-1) .","najdite na osi 
   1 "","@emu rawny postoqnnye","
   1 "","3.na skolxko izmenitsq","dlina okruvnosti,esli","radius izmenitsq na 1 mm",""," ","  otwet wwedite s to@-","  nostx# w tri znaka.","","","","","","","","",""
   1 "","2.wy@islite dlinu okruv-","","nosti,esli radius rawen","","        15 m","","  otwet wwedite s to@-","  nostx# w tri znaka.","","","","","","","","",""
   1 "","1.wy@islite dlinu okruv-","","nosti,esli radius rawen","","        10 m","","  otwet wwedite s to@-","  nostx# w tri znaka.","","","","","","","",""
   1 "","1.1 wysota piramidy","rawna 16m. plo&adx ","osnowaniq rawna 512 m
   1 "","1.1 osnowanie piramidy","romb s diagonalqmi 6m","i 8m;wysota piramidy","prohodit @erez to@ku","perese@eniq diagonalej","romba i rawna 1m.","","najdite bokowu# powerh-","nostx romba.","",""
   1 "","","2. prawilxnyj mnogogran-","nik,u kotorogo grani","prawilxnye pqtiugolx-","niki - _to ....","","1)dodeka_dr. 2)ikosa_dr.","3)tetra_dr. 4)kub.","       5) okta_dr.","",""
   1 "","","1.2 w prawilxnoj use-","@ennoj piramide storony","osnowanij 8m i 2m.","wysota rawna 4m.","","","najdite plo&adx polnoj ","    powerhnosti.","","",""
   1 "","","1.2 storony osnowanij","prawilxnoj use@ennoj","treugolxnoj piramidy","4 dm i 1 dm. bokowoe","rebro 2 dm.","","","najdite wysotu piramidy.","","",""
   1 "","","","","","","","","","","","","","","","","","","","","","","","",""
   1 "","","","","","","","","","","","","","","","","","","","","","",""
   1 "","","","","","","","","","","","","","","","","","","","",""
   1 "","","","","","","","","","","","","","","","","","","",""
   1 "","","","","","","","","",""
   1 "","","","","","","","",""
   1 "","","","","","","",""
   1 "","","","","","    rasstoqnie mevdu"," to@kami A
   1 "","","","","","    prqmye , kotorye  ne"," pereseka#tsq i ne levat"," w odnoj ploskosti,nazy-"," wa#tsq skre&iwa#&imisq.",""
   1 "","","","","  plo&adx trapecii raw-"," na proizwedeni# polu-"," summy ee osnowanij na"," wysotu.","","   plo&adx trapecii aBCD"," rawna:"
   1 "","","","","  3. otno%enie otrezkow"," odnoj prqmoj ili paral-"," lelxnyh prqmyh pri pa-"," rallelxnom proektirowa-"," nii sohranqetsq."
   1 "","","","","  3. otno%enie otrezkow"," odnoj prqmoj ili paral-"," lelxnyh prqmyh pri pa-"," rallelxnom proektirowa-"
   1 "","","","","  2. parallelxnye otrez-"," ki figury izobrava#tsq"," na ploskosti @erteva"," parallelxnymi otrezkami"," ili otrezkami,leva&imi"," na odnoj prqmoj."
   1 "","","","","   teorema.", "","   dwe prqmye,parallelx-"," nye   tretxej   prqmoj,"," parallelxny.","",""
   1 "","","","","   summoj wektorow"," 
   1 "","","","","   plo&adx prqmougolxni-"," ka rawna proizwedeni#"," dlin ego storon.",""
   1 "","","","","   osnowanie naklonnoj -","_to konec otrezka, leva-","&ij w ploskosti.",""
   1 "","","","","     teorema.","","","   esli prqmaq,pereseka-"," #&aq ploskostx,perpen-"," dikulqrna dwum prqmym w"," _toj ploskosti, proho-"," dq&im @erez to@ku pere-"," se@eniq,to  ona perpen-"," dikulqrna ploskosti.","","","","","","","","","","","","","","","","","","","","","",""
   1 "","","","","     teorema.","","","   esli ploskostx per-"," pendikulqrna  odnoj iz"," dwuh parallelxnyh prq-"," myh, to ona perpendiku-"," lqrna i drugoj prqmoj.","","","","","","","","","","","","","","","","","","","","","",""
   1 "","","","","     teorema.","","","   dwe prqmye, perpendi-"," kulqrnye odnoj i toj ve"," ploskosti, parallelxny.",""," ","","","","","","","","","","","","","","","","","","","","","","",""
   1 "","",""," u treugolxnika storony","rawny 20,21,13 m .","najdite kosinus ugla 
   1 "","",""," storony treugolxnika","rawny 2 , 5 i 4 sm .","najdite kosinus ugla 
   1 "","",""," C2: esli dwe razli@nye","ploskosti ime#t ob&u#","to@ku,to oni pereseka#t-","sq po prqmoj."
   1 "","","","  plo&adx   powerhnosti","  sferi@eskogo segmenta","  rawna:","","","         S=2
   1 "","","","   ugol mevdu skre&iwa#-"," &imisq prqmymi-_to ugol"
   1 "","","","   skalqrnym proizwede-"," niem wektorow:","  
   1 "","","","   rasstoqnie ot  to@ki","do ploskosti -_to dlina","perpendikulqra,opu&enno-","go iz dannoj to@ki."
   1 "","","","   proizwedeniem wektora"," 
   1 "","","","   prizma nazywaetsq"," prqmoj,esli ee bokowye"," rebra perpendikulqrny"," osnowaniqm.",""
   1 "","","","   plo&adx treugolxnika"," rawna polowine proizwe-"," deniq ego storony na"," wysotu, prowedennu# k"," _toj storone.","",""
   1 "","","","   plo&adx    bokowoj","   powerhnosti konusa","   rawna:","","","         S=
   1 "","","","   otrezok, soedinq#&ij","osnowaniq perpendikulqra","i naklonnoj iz odnoj i","toj ve to@ki, estx  pro-","ekciq naklonnoj.",""
   1 "","","","   na ploskosti @erez","to@ku, ne leva&u# na","dannoj prqmoj,movno pro-","westi ne bolee odnoj","prqmoj , parallelxnoj"
   1 "","","","    teorema.","","    esli prqmaq, ne pri-"," nadleva&aq ploskosti,"," parallelxna kakoj-"," -nibudx prqmoj w _toj"," ploskosti,to ona paral-"," lelxna i samoj plos-"," kosti."
   1 "","","","    teorema.","","    @erez to@ku wne dan-"," noj prqmoj  movno  pro-"," westi prqmu#,parallelx-"," nu# _toj prqmoj,i pri-"," tom tolxko odnu.",""
   1 "","","","     teorema.","","   otrezki na paral-"," lelxnyh prqmyh,zakl#-"," @ennye mevdu dwumq pa-"," rallelxnymi ploskostq-"," mi,rawny.",""
   1 "","","","     teorema.","","   esli dwe to@ki prqmoj"," prinadlevat ploskosti,"," to wsq prqmaq prinad-"," levit _toj ploskosti.",""
   1 "","","","     teorema.","","   esli dwe parallelxnye"," ploskosti pereseka#tsq"," tretxej,to prqmye pere-"," se@eniq parallelxny."
   1 "","","","     teorema.","","   @erez tri to@ki,ne"," leva&ie na odnoj"," prqmoj,movno prowesti"," ploskostx,i pritom"," tolxko odnu.","",""
   1 "","","","     teorema.","","   @erez to@ku wne"," dannoj ploskosti movno"," prowesti ploskostx,"," parallelxnu# dannoj,"," i pritom tolxko odnu.",""
   1 "","","","     sledstwie.","","   ploskostx i ne leva-"," &aq na nej prqmaq libo"," ne pereseka#tsq,libo"," pereseka#tsq w odnoj"," to@ke."
   1 "","","","       teorema","","    ploskostx,perpendi-"," kulqrnaq osi cilindra,"
   1 "",""," u treugolxnika dwe","storony rawny 5 sm i ","6 sm .","movet li ugol,protiwo-","leva&ij storone 5 sm","bytx tupym?","",""
   1 "",""," u treugolxnika dwe","storony rawny 20 m i","21 m,a 
   1 "",""," prqmaq 
   1 "",""," pri kakih zna@eniqh ","
   1 "",""," plo&adx-_to polovitelx-"," naq weli@ina,kotoraq"," obladaet sledu#&imi"," swojstwami:","","","","","","","","","","","","",""
   1 "",""," obxem use@ennogo konusa","s radiusami osnowanij","R
   1 "",""," dany storona i dwa ","ugla treugolxnika.","najdite ugol 
   1 "","","  plo&adx segmenta","","        
   1 "","","  otno%enie dliny okruv-","nosti k diametru obozna-","@a#t gre@eskoj bukwoj 
   1 "","","  krugowoj sektor-@astx"," kruga ,leva&aq wnutri"," sootwetstwu#&ego cent-"," ralxnogo ugla.",""," plo&adx krugowogo sek-"," tora","","        
   1 "","","  1.rawnye figury ime#t"," rawnye plo&adi.","","","  2.esli figura razbiwa-"
   1 "","","   use@ennaq piramida,","kotoraq polu@aetsq iz","prawilxnoj piramidy,","takve nazywaetsq pra-","wilxnoj."
   1 "","","   ugol mevdu parallelx-"," nymi ploskostqmi rawen"," nul#.","","","",""
   1 "","","   u parallelepipeda wse"," grani-parallelogrammy.","",""
   1 "","","   to@ka C- seredina ot-"," rezka A
   1 "","","   prqmaq prizma nazywa-"," etsq prawilxnoj,esli ee"," osnowaniq qwlq#tsq pra-"," wilxnymi mnogougolxni-"," kami.","","",""
   1 "","","   plo&adx kruga rawna"," polowine proizwedeniq"," dliny , ograni@iwa#&ej"," ego okruvnosti , na"," radius.","",""
   1 "","","   plo&adx ABCD rawna:",""   
   1 "","","   obxemy podobnyh tel"," otnosqtsq kak kuby ih"," sootwetstwu#&ih"," linejnyh razmerow",""
   1 "","","   naklonnaq  iz dannoj","to@ki k dannoj ploskosti","estx l#boj otrezok, soe-","dinq#&ij dannu# to@ku s","l#boj to@koj ploskosti i","ne qwlq#&ijsq  perpendi-","kulqrom."
   1 "","","   konec otrezka (to@ka"," B),leva&ij w ploskosti,"," nazywaetsq   osnowaniem"," perpendikulqra AB."
   1 "","","   ko_fficienty 
   1 "","","   esli 
   1 "","","   diagonalx prizmy -"," otrezok,soedinq#&ij dwe"," wer%iny,ne prinadleva-"," &ie odnoj grani.",""
   1 "","","   bokowye grani pra-","wilxnoj use@ennoj pira-","midy-rawnye rawnobokie","trapecii,ih wysoty","nazywa#tsq apofmami."
   1 "","","   bokowoj powerhnostx#"," prizmy nazywaetsq summa"," plo&adej bokowyh granej","","","   teorema.","","   bokowaq powerhnostx"," prqmoj prizmy rawna"," proizwedeni# perimetra"
   1 "","","    teorema","","ploskostx,perpendikulqr-","naq osi konusa,pereseka-","et konus po krugu,a bo-"
   1 "","","    po tretxemu priznaku"," rawenstwa treugolxnikow"," treugolxniki     ABC  i"," A
   1 "","","    parallelxnyj perenos"," w prostranstwe-_to pre-"," obrazowanie,pri kotorom"," to@ka (
   1 "","","    parallelxnyj perenos"," w prostranstwe zadaetsq"," formulami:","","","   
   1 "","","    ikosa_dr:","","grani-prawilxnye tre-","ugolxniki;w kavdoj wer-","%ine shoditsq po pqtx","reber."
   1 "","","    dodeka_dr:","","grani-prawilxnye pqti-","ugolxniki;w kavdoj wer-","%ine shoditsq po tri","rebra."
   1 "","","    AC
   1 "","","    ABCD  
   1 "","","     teorema","","@erez l#bu# to@ku %aro-","woj powerhnosti prohodit","beskone@no mnogo kasa-","telxnyh,pri@em wse oni"
   1 "","","     teorema","",""," liniq perese@eniq dwuh",""," sfer estx okruvnostx."
   1 "","","      teorema.","","   ploskostx,parallelx-","naq osnowani# piramidy i","pereseka#&aq ee,otsekaet"
   1 "","","        teorema:","","  pereseka#&iesq prqmye,","sootwetstwenno    paral-","lelxnye perpendikulqrnym","prqmym, sami perpendiku-","lqrny."
   1 "","","     
   1 "","","   
   1 ""," tri latunnyh kuba s","rebrami 3 sm,4 sm,5 sm","pereplawleny w odin kub.","kaku# dlinu imeet rebro","_togo kuba?","","","","","",""
   1 ""," skolxko gradusow soder-","vit centralxnyj ugol,","esli sootwetstwu#&aq emu","duga sostawlqet 1/5 ot","dliny okruvnosti.","","","","","","","","",""
   1 ""," skolxko gradusow soder-","vit centralxnyj ugol,","esli sootwetstwu#&aq emu","duga sostawlqet 1/4 ot","dliny okruvnosti.","","","","","","","","","","",""
   1 ""," skolxko gradusow soder-","vit centralxnyj ugol,","esli sootwetstwu#&aq emu","duga sostawlqet 1/3 ot","dliny okruvnosti.","","","","","","","","","",""
   1 ""," otrezok dlinoj 10m","peresekaet ploskostx;","koncy ego nahodqtsq na","rasstoqniqh 2m i 3m ot","ploskosti."," najdite ugol mevdu","otrezkom i ploskostx#.","","otwet wwedite w ","gradusah.","",""
   1 ""," ortogonalxnaq proekciq","prqmoj na ploskostx estx","prqmaq na kotoroj levat","osnowaniq perpedikulq-","row,opu&ennyh iz to@ek","dannoj prqmoj na plos-","kostx."
   1 ""," awsD,wsFe,...-grani.",""," aw,ws,sF,eF,...-rebra.",""," a,w,s,D,e,F...-wer%iny.","","","","",""
   1 ""," R-radius osnowaniq,",""," H-wysota","","",""
   1 ""," @erez katet rawnobed-","rennogo prqmougolxnogo","treugolxnika prowedena","ploskostx pod uglom 45
   1 ""," @emu rawna plo&adx","ortogonalxnoj proekcii","kwadrata so storonoj","6 sm na ploskostx 
   1 "","  w ploskosti parallelx-"," nyh prqmyh 
   1 "","  to@ka perese@eniq dia-"," gonalej parallelepipeda"," qwlqetsq  ego  centrom"," simmetrii." 
   1 "","  rasstoqniem     mevdu"," skre&iwa#&imisq  prqmy-"," mi nazywaetsq dlina ih"," ob&ego perpendikulqra.",""
   1 "","  prqmoj parallelepiped,"," u  kotorogo osnowaniem"," qwlqetsq prqmougolxnik,"," nazywaetsq  prqmougolx-"," nym parallelepipedom.",""
   1 "","  powerXnostx konusa"," sostoit iz osnowaniq"," i bokowoj powerXnosti.","","","","","",""
   1 "","  podobie prawilxnyh","wypuklyh mnogougolxnikow","","","     teorema.","","   prawilxnye wypuklye"," 
   1 "","  ob'em prqmougolxnogo","","    parallelepipeda.","","",""
   1 "","  nazywaetsq wektor","  
   1 "","  dlina okruvnosti wy-","@islqetsq po formule","","      
   1 "","  @etyrehugolxniki"," CAA
   1 "","  3.plo&adx kwadrata so"," storonoj,rawnoj edinice"," izmereniq,rawna edinice",""
   1 "","  2. prqmye ne levat w"," odnoj ploskosti.",""," togda 
   1 "","   wwedenie dekartowyh","koordinat w prostranstwe","","","  wzaimoperpendikulqrnye"," prqmye 
   1 "","   uglom mevdu ploskos-"," tqmi 
   1 "","   trehgrannyj ugol-_to"," figura,sostawlennaq iz"," treh ploskih uglow,ko-"," torye nazywa#tsq granq-"," mi trehgrannogo ugla,"," a ih storony-rebrami."
   1 "","   teorema.","",""," otno%enie dliny okruv-","nosti k ee diametru ne","zawisit ot okruvnosti,","t.e. odno i to ve dlq","l#byh dwuh okruvnostej."
   1 "","   teorema kosinusow.","   
   1 "","   storony granej nazy-"," wa#tsq rebrami mnogo-"," grannika.",""
   1 "","   sledstwie.","","   kwadrat storony treu-"," golxnika rawen summe"," kwadratow dwuh drugih"," storon + ili - udwoen-"," noe proizwedenie odnoj"," iz nih   na   proekci# "," drugoj.",""
   1 "","   prqmougolxnik so sto-"," ronami 
   1 "","   prqmaq,prohodq&aq","@erez to@ku a %arowoj","powerhnosti perpendiku-","lqrno k radiusu,prowe-","dennomu w _tu to@ku,","nazywaetsq kasatelxnoj."
   1 "","   preobrazowanie t.X w","t.X'  nazywaetsq  preob-","razowaniem simmetrii.","","   figura,  kotoraq pri","preobrazowanii   simmet-","rii  perehodit  w  sebq,","nazywaetsq simmetri@noj","otnositelxno  ploskosti."
   1 "","   ploskostx,prohodq&aq","@erez to@ku a %arowoj","powerhnosti i perpen-","dikulqrnaq radiusu,pro-","wedennomu w _tu to@ku,","nazywaetsq kasatelxnoj","ploskostx#."," a- to@ka kasaniq."
   1 "","   ploskosti bokowyX","granej opisannoj pirami-","dy qwlq#tsq kasatelx-","nymi ploskostqmi konusa.","","",""
   1 "","   piramida nazywaetsq","prawilxnoj,esli ee osno-","waniem qwlqetsq prawilx-","nyj mnogougolxnik,a os-","nowanie wysoty sowpadaet","s centrom _togo mnogo-"
   1 "","   perpendikulqrnostx","   prqmoj i ploskosti.","","","","","   prqmaq, pereseka#&aq"," ploskostx,perpendiku-"," lqrna _toj ploskosti,"," esli ona perpendikulqr-"," na l#boj prqmoj plos-"," kosti."
   1 "","   perpendikulqrnostx","      ploskostej.","","","   dwe pereseka#&iesq","ploskosti (
   1 "","   perpendikulqrnostx","         prqmyh.","","","   dwe prqmye perpendi-","kulqrny,esli oni perese-","ka#tsq pod prqmym uglom."
   1 "","   parallelxnye prqmye","      w prostranstwe.","","","","","    dwe prqmye w prost-"," ranstwe    nazywa#tsq"," parallelxnymi,esli  oni"," levat w odnoj ploskosti"
   1 "","   parallelxnostx prqmoj","     i ploskosti.","","","","","  prqmaq i ploskostx na-"," zywa#tsq parallelxnymi,"," esli oni ne pereseka#t-"," sq.",""
   1 "","   osnowaniq prizmy raw-"," ny i levat w parallelx-"," nyh ploskostqh.","","   bokowye rebra prizmy"," parallelxny i rawny.",""
   1 "","   obxem konusa wy@islq-","etsq po formule:","","     1","   V=-
   1 "","   ob&aq wer%ina ploskih"," uglow nazywaetsq wer%i-"," noj trehgrannogo ugla.","","","","","","","",""
   1 "","   ob&aq @astx takoj"," ploskosti i powerhnosti"," wypuklogo mnogogrannika"," nazywaetsq granx#.","",""
   1 "","   kasatelxnaq ploskostx","cilindra proXodit @erez","obrazu#&u# i perpendiku-","lqrna osewomu se@eni#."
   1 "","   granica %ara nazywa-"," etsq sferoj ili %aro-"," woj powerhnostx#.",""
   1 "","   dlq prostyh tel ob'em"," -_to polovitelxnaq we-"," li@ina,@islennoe zna@e-"," nie kotoroj  obladaet"," sledu#&imi swojstwami:",""
   1 "","   dlina okruvnosti s","centrom o rawna dline","otrezka Aa''","","   dlina okruvnosti","skolx ugodno malo otli-"
   1 "","   diagonalxnym se@enie"," prizmy nazywaetsq se@e-"," nie ploskostx#,kotoraq"," prohodit @erez dwa bo-"," kowyh rebra,ne prinad-"," leva&ih odnoj grani.",""
   1 "","   bokowaq powerhnostx","        cilindra.","","","","  plo&adx      bokowoj","  powerhnosti cilindra","  opredelqetsq      po","  formule:","","","         S=2
   1 "","   aws
   1 "","   V:V
   1 "","   Ob'em prizmy.","","","   ob'em l#boj prizmy"," rawen proizwedeni#"," plo&adi osnowaniq na"
   1 "","   6.pri   parallelxnom"," perenose w prostranstwe"," kavdaq ploskostx  pere-"," hodit libo w sebq,libo"," w parallelxnu# ej plos-"," kostx.",""
   1 "","   5.dwa   parallelxnyh"," perenosa,  wypolnennyh"," posledowatelxno,  estx"," parallelxnyj perenos."
   1 "","   4.kakowy by ni  byli"," to@ki A i A',su&estwuet"," edinstwennyj parallelx-"," nyj perenos,pri kotorom"," t.A perehodit w t.A'."
   1 "","    u  @etyrehugolxnika"," ABB
   1 "","    teorema:","","","    w prqmougolxnom pa-"," pallelepipede  kwadrat"," l#boj diagonali rawen"," summe  kwadratow treh"," ego storon (reber)."
   1 "","    teorema:","","","    u   parallelepipeda"," protiwoleva&ie   grani"," parallelxny i rawny."
   1 "","    teorema.","","   dwe ploskosti paral-"," lelxny,esli odna iz"," nih parallelxna dwum "," pereseka#&imsq prqmym,"," leva&im w drugoj plos-"," kosti."
   1 "","    teorema sinusow.","    
   1 "","    takim  obrazom,"," AB=A
   1 "","    rasstoqnie mevdu","    skre&iwa#&imisq","        prqmymi.","","","  ob&im perpendikulqrom"," dwuh    skre&iwa#&ihsq"," prqmyh nazywaetsq otre-"," zok s koncami  na _tih"," prqmyh ,qwlq#&ijsq per-"," pendikulqrom k kavdoj"," iz nih."
   1 "","    ponqtie plo&adi","","","   figura nazywaetsq"," prostoj,esli ee movno"," razbitx na kone@noe"," @islo treugolxnikow.","","","   dlq prostyX figur" 
   1 "","    osnowaniq cilindra"," rawny i levat w paral-"," lelxnyX ploskostqX.","","    u cilindra obrazu#-"," &ie parallelxny i rawny",""
   1 "","    kub:","grani-kwadraty. w kavdoj","wer%ine shoditsq po tri","rebra.","","    okta_dr:"
   1 "","    O-to@ka perese@eniq","      diagonalej.","    BO=OD
   1 "","    1","  V=-
   1 "","    1      
   1 "","     zada@a 3","","   dany dwe storony 
   1 "","     zada@a 2.","","   dany  dwe  storony  i"," ugol mevdu nimi.",""
   1 "","     teorema","","  kasatelxnaq ploskostx","imeet s %arom tolxko","odnu ob&u# to@ku-to@ku","kasaniq."
   1 "","     re%enie.","","   po teoreme kosinusow"," nahodim tretx# storonu."," imeq tri storony i odin"," ugol po teoreme sinusow"," nahodim dwa ostaw%ihsq"," ugla.","","","","","","","",""
   1 "","     plo&adx sfery.","","","","  plo&adx sfery radiusa","  R rawna:","","","         S=4
   1 "","     dokazatelxstwo:","","  pustx 
   1 "","      teorema",""," plo&adx ortogonalxnoj","proekcii mnogougolxnika","na ploskostx rawna pro-","izwedeni# ego plo&adi na"
   1 "","        teorema:","",""," esli ploskostx prohodit","@erez prqmu#,perpendiku-","lqrnu# drugoj ploskosti,","to _ti ploskosti perpen-","dikulqrny."
   1 "","        teorema:","","","  esli prqmaq, leva&aq w","odnoj iz dwuh ploskostej","perpendikulqrna ih linii","perese@eniq, to ona per-","pendikulqrna  i  drugoj","ploskosti."
   1 "","        teorema:","","","    dwe  skre&iwa#&iesq"," prqmye   ime#t   ob&ij"," perpendikulqr,i pritom"," tolxko odin. on qwlqet-"," sq ob&im  perpendikulq-"," rom parallelxnyh  plos-"," kostej,prohodq&ih @erez"," _ti prqmye." 
   1 "","        teorema","(o treh perpendikulqrah)","","   prqmaq,prowedennaq na","ploskosti @erez  osnowa-","nie naklonnoj  perpendi-","kulqrno ee proekcii,","perpendikulqrna i samoj","naklonnoj.","","  i obratno,","","  esli prqmaq  na plos-","kosti perpendikulqrna","naklonnoj , to ona per-","pendikulqrnaq i proek-","cii naklonnoj."
   1 "","        swojstwa"," parallelxnogo perenosa.","","","   1.parallelxnyj pere-"," nos estx dwivenie.","","   2. pri  parallelxnom"," perenose to@ki sowme&a-"," #tsq  po  parallelxnym"," prqmym na odno i to ve"," rasstoqnie.","","   3.pri   parallelxnom"," perenose prqmaq pereho-"," dit w parallelxnu#  ej"," prqmu#.",""
   1 "","          AB * CE","       S= 
   1 "","                H","      V=
   1 "","      
   1 " zna@it  summa  uglow 
   1 " wysotu.","","","       V=S*H   , gde","","  S - plo&adx ABCDE ,",""
   1 " wse wer%iny mnogougolx-","nika levat na okruvnosti","s centrom o i radiusom,","rawnym bokowym storonam","treugolxnikow.",""
   1 " wse storony mnogougolx-","nika kasa#tsq okruvnosti","s centrom o i radiusom,","rawnym wysotam treugolx-","nikow,prowedennym iz t.o","",""
   1 " wne%nim uglom wypuklogo","mnogougolxnika nazywaet-","sq ugol,smevnyj wnutren-","nemu   uglu  pri  dannoj","wer%ine.","","-neprawilxnyj 
   1 " wektory w prostranstwe","","","   wektorom w prostran-"," stwe nazywaetsq napraw-"," lennyj otrezok.","","","          
   1 " w prqmom parallele-","pipede storony osnowaniq"," 
   1 " w prqmoj   treugolxnoj","prizme storony osnowa-","nij rawny 4 sm,5 sm,","7 sm. bokowoe rebro","rawno bolx%ej wysote","osnowaniq.","najdite ob'em prizmy.","","","","",""
   1 " w prawilxnoj %esti-","ugolxnoj prizme plo&adx","naibolx%ego diagonalx-","nogo se@eniq rawna 4 m
   1 " uglom wypuklogo mnogou-","golxnika  dannoj wer%iny","nazywaetsq ugol, obrazo-","wannyj ego storonami,is-","hodq&imi iz  odnoj  wer-","%iny."
   1 " to@ki _tiX krugow.","","    krugi nazywa#tsq"," osnowaniqmi cilindra.","","    otrezki,soedinq#&ie"," sootwetstwu#&ie to@ki"
   1 " tela  wra&eniq   (@astx 1)   obu@a#&ij kurs   1991 god.                   "
   1 " summa uglow mnogougolx-","nika r1 rawna  summe ug-","low  mnogougolxnika  r2:","a
   1 " storony treugolxnika","rawny:13 sm,14 sm,15 sm.","najdite rasstoqnie ot","ploskosti treugolxnika","do centra %ara ka-","sa#&egosq wseh storon","treugolxnika.radius ","%ara 5 sm.","","otwet wwedite w ","santimetrah.",""
   1 " soedinqq t.o s wer%ina-","mi mnogougolxnika,polu-","@im rawnobedrennye treu-","golxniki;osnowaniem kav-","dogo qwlqetsq storona","mnogougolxnika.zna@it:",""
   1 " rogo  w  ob&em  slu@ae"," qwlq#tsq to@kami pere-"," se@eniq seku&ej plos-"," kosti s rebrami mnogo-"," grannika, a storony -"," s ego granqmi.",""
   1 " rebra qwlq#tsq obrazu#-"," &imi cilindra.","",""
   1 " re%enie treugolxnikow.","","","     zada@a 1.","","   dany storona 
   1 " radiusy %arow rawny","25 dm i 29 dm,a rasstoq-","nie mevdu ih centrami","36 dm.","najdite dlinu linii,","po kotoroj pereseka#tsq","ih powerhnosti.","otwet wwedite w wide","@isla,umnovennogo na 
   1 " prqmougolxnika wokrug"," ego storony kak osi.","","",""
   1 " ploskosti osnowaniq-"," wer%iny piramidy i wseh"," otrezkow,soedinq#&ih "," wer%inu s to@kami osno-"," waniq-bokowyh reber.","","   awsDE - osnowanie"
   1 " ploskim mnogougolxnikom","nazywaetsq figura,sosto-","q&aq iz mnogougolxnika i","ograni@ennoj im ploskos-","ti.","",""
   1 " plo&adi powerhnostej tel   obu@a#&ij kurs   1991 god                     "
   1 " plo&adi figur   obu@a#&ij kurs   1991 god.                                "
   1 " perpendikulqrnostx prqmyh i ploskostej   (@astx 2)   1991 god             "
   1 " perpendikulqrnostx prqmyh i ploskostej   (@astx 1)   1991 god.            "
   1 " perpendikulqrnostx prqmyh   obu@a#&ij kurs   1991 god                     "
   1 " peresekaet ploskosti 
   1 " peresekaet ego bokowu#"," powerXnostx po ok-"," ruvnosti,rawnoj okruv-"," nosti osnowaniq.","","        R=R'"
   1 " parallelxnostx prqmyh i ploskostej   (@astx 2)   1991 god.        "
   1 " parallelxnaq proekciq w"," naprawlenii,perpendiku-"," lqrnom dannoj ploskosti","","","   
   1 " osnowaniq na wysotu"," prizmy t.e. na   dlinu "," bokowogo rebra.","","","","","","","","","","","","","","","","","","","","","","","","","","","","","",""
   1 " okruvnostej krugow,"," nazywa#tsq obrazu#-"," &imi cilindra.",""
   1 " obxemy tel   (@astx 2)   obu@a#&ij kurs   1991 god.                       "
   1 " nekotoryh aksiom plani-","         metrii:","","","   prqmaq,prinadleva&aq","ploskosti,razbiwaet _tu","ploskostx  na dwe  polu-"
   1 " nekotorye sledstwiq"," aksiom stereometrii.","","","     teorema.","","   @erez  prqmu#  i  ne"," leva&u#  na  nej to@ku"," movno prowesti plos-"," kostx i pritom tolxko"," odnu."
   1 " nazywa#tsq koordinatny-"," mi osqmi .","","   t.O-na@alo koordinat.","","  ploskosti 
   1 " najdite radius zemnogo","%ara,ishodq iz togo,@to","1 metr sostawlqet odnu","40-millionnu# dol# ","_kwatora.","","","otwet wwedite w kilo-","metrah,s to@nostx#","5 znakow.","","","","","","","","",""
   1 " na wysotu.","","","      V=S*CC
   1 " na powerhnosti %ara","dany tri [email protected]","linejnye rasstoqniq ","mevdu nimi 6 sm,8 sm,","10 sm.radius %ara 13 sm.","najdite rasstoqnie ot","centra do ploskosti,","prohodq&ej @erez _ti","to@ki.","otwet wwedite w santi-","metrah."
   1 " mnogougolxniki   ( @ a s t x  2 )     1 9 9 1   g o d .                   "
   1 " mnogougolxnik nazywaet-","sq wypuklym, esli on le-","vit w odnoj poluploskos-","ti  otnositelxno   l#boj","prqmoj,  soderva&ej  ego","storonu."
   1 " mnogougolxnik nazywaet-","sq wpisannym, esli ego","wer%iny levat na nekoto-","roj okruvnosti.",""
   1 " mnogougolxnik nazywaet-","sq opisannym,esli wse","ego storony kasa#tsq ne-","kotoroj okruvnosti.","",""
   1 " mnogogranniki   (@astx 3)   obu@a#&ij kurs   1991 god.                    "
   1 " mnogogranniki   (@astx 2)   obu@a#&ij kurs   1991 god                     "
   1 " mevdu pereseka#&imisq"," parallelxnymi im prqmy-"," mi.","","","   
   1 " kubi@eskih   metrah"," i t.d.","","","","","",""
   1 " kotorogo rawno edinice"," dliny,rawen edinice.","","   esli kub imet rebro"," 1 sm,to ob'em budet w"," kubi@eskih santimetrah;","   esli rebro kuba rawno"," 1 m ,to ob'em budet w"
   1 " izobravenie prostrans-"," twennyh figur na plos-","     kosti.","","","     swojstwa:","","  1. prqmolinejnye ot-"," rezki figury izobrava-"," #tsq na ploskosti @er-"," teva otrezkami."
   1 " i wseh otrezkow,soedi-"," nq#&ih sootwetstwu#&ie"," to@ki _tih mnogougolx"," nikow",""," mnogougolxniki nazywa#-","tsq osnowaniqmi prizmy,"
   1 " i ne pereseka#tsq.","","","","","","","","","","","","","","","","","","",""
   1 " i gruppa aksiom 'C',wy-"," rava#&aq osnownye swoj-"," stwa  ploskostej w"," prostranstwe.","","","",""
   1 " gonalxnoj proekciej "," 
   1 " golxniki,opisannye oko-"," lo osnowanij cilindra."," ploskosti ee granej"," kasa#tsq bokowoj po-"," werXnosti cilindra.",""
   1 " etsq na @asti,qwlq#&ie-"," sq prostymi figurami,to"," plo&adx _toj figury"," rawna summe plo&adej"," ee @astej.",""
   1 " dwa rawnobedrennyh tre-","ugolxnika ime#t ob&ee","osnowanie,rawnoe 16m. ih","ploskosti obrazu#t <60
   1 " dlinoj  lomanoj nazywa-","etsq summa  dlin ee zwe-","nxew.","",""
   1 " diagonali romba rawny","15 sm,20 sm. %arowaq ","powerhnostx kasaetsq ","wseh ego storon.","radius %ara 10 sm.","najdite rasstoqnie ot","centra %ara do plos-","kosti romba.","  otwet wwedite w ","santimetrah","",""
   1 " dekartowy koordinaty i wektory w prostranstwe   (@astx 1)   1991 god      "
   1 " aksiomy stereometrii   obu@a#&ij kurs   
   1 " S(ABCD)=
   1 " H-wysota.","","","","","",""
   1 " C3: esli dwe razli@nye","prqmye ime#t ob&u# to@ku","to  @erez nih movno pro-","westi ploskostx,i pritom","tolxko odnu.","",""," uto@nennye formulirowki"
   1 " @emu rawna plo&adx","proekcii prqmougolxnogo","rawnobedrennogo treu-","golxnika s gipotenuzoj-","-osnowaniem 16m na plos-","kostx 
   1 " @emu rawna plo&adx ","ortogonalxnoj proekcii","kruga s radiusom 10m ","na ploskosti 
   1 " @astx okruvnosti,raspo-","lovennoj wnutri ploskogo","ugla estx duga,otwe@a#-","&aq _tomu centralxnomu","uglu.","","",""
   1 " %kiw imeet diametr 1 m.","i delaet 80 oborotow w","minutu. najdite skorostx","to@ki na okruvnosti","%kiwa.","","otwet wwedite w m/min.","s to@nostx# 4 znaka.","","","","","","","","",""
   1 " %e dannogo ( radiusa"," kruga).","","","","","",""
   1 " %ara na seku&u#  plos-"," kostx.",""," oo' perpendikulqr na 
   1 " ","","   sledstwie:","","   w treugolxnike protiw"," bolx%ego   ugla   levit"," bolx%aq storona,protiw"," bolx%ej  storony  levit"," bolx%ij ugol.",""
   1 " "," "," "," "," "," "," "," ","
   1 " ","   sledstwie:","","   summa kwadratow  dia-"," gonalej parallelogramma"," rawna summe kwadratow"," ego storon.","","","","AC
   1 " ","   C -prqmaq perese@eniq"," ploskostej 
   1 "  wysotoj piramidy na-","zywaetsq perpendikulqr,","opu&ennyj iz wer%iny pi-","ramidy na ploskostx os-","nowaniq.","",""
   1 "  urawnenie sfery .","","  urawnenie sfery s ra-","diusom R i centrom ","w to@ke a(
   1 "  urawnenie ploskosti.","","","  urawnenie ploskosti","  imeet wid","","   
   1 "  ugol mevdu prqmymi","     i ploskostqmi.","","","","   dwe   pereseka#&iesq"," prqmye obrazu#t werti-"," kalxnye i smevnye ugly.","","   1 i 2 -wertikalxnye"," ugly;","   3 i 4 -smevnye ugly","",""
   1 "  u prawilxnyh 
   1 "  u  prqmougolxnogo"," parallelepipeda wse"," grani - prqmougolxniki.","","  prqmougolxnyj paralle-"," lepiped,u kotorogo wse"," rebra rawny,nazywaetsq"," kubom."
   1 "  tela wra&eniq   (@astx 2)   obu@a#&ij kurs   1991 god .                  "
   1 "  skalqrnoe proizwedenie"," wektorow rawno proizwe-"," deni# ih absol#tnyh we-"," li@in na kosinus ugla"," mevdu wektorami.","",""
   1 "  preobrazowanie figur","    w prostranstwe.","","   prqmaq  XX' perpendi-","kulqrna ploskosti 
   1 "  ploskostx,prohodq&aq","@erez centr %ara nazywa-","etsq diametralxnoj plos-","kostx#.","","   se@enie %ara diamet-","ralxnoj ploskostx# nazy-"
   1 "  plo&adx sfery.","  bokowaq powerhnostx","  cilindra.","  prakti@eskoe zadanie.","  wyhod."
   1 "  plo&adx ortogonalxnoj","proekcii mnogougolxnika.","","","   ortogonalxnoj proek-"," ciej figury na dannu#"," ploskostx nazywaetsq ee"
   1 "  piramidoj,wpisannoj w","konus,nazywaetsq pirami-","da,osnowanie kotoroj","estx prawilxnyj mnogou-","golxnik,wpisannyj w ok-","ruvnostx osnowaniq konu-"
   1 "  perpendikulqrnostx","  prqmoj i ploskosti.","  perpendikulqr i","  naklonnaq.","  prakti@eskoe zadanie.","  wyhod."
   1 "  osewoe se@enie-_to se-","@enie ploskostx#,proXo-","dq&ej @erez osx konusa.","",""
   1 "  ob'em naklonnogo","    parallelepipeda.","","","  ob'em l#bogo paralle-"," lepipeda rawen proizwe-"," deni# plo&adi osnowaniq"
   1 "  mnogogranniki.        @astx  1.          
   1 "  mnogogrannik wypuklyj,"," esli on raspoloven po"," odnu storonu ploskosti"," kavdogo ploskogo mnogo"," ugolxnika na ego po-"," werhnosti."
   1 "  konus movno rassmatri-","watx kak telo,polu@ennoe","pri wra&enii prqmougolx-","nogo treugolxnika wokrug","ego kateta kak osi.","","  wysota konusa- perpen-"
   1 "  esli storony paralle-"," lepipeda,rawny 
   1 "  H -wysota prizmy (FF')","","","","","",""
   1 "  %arowoj sloj-@astx","%ara,raspolovennaq mevdu","dwumq parallelxnymi","ploskostqmi.","","  %arowoj sektor - telo,","kotoroe polu@aetsq iz"
   1 "  ","","   kwadrat so storonoj","1m imeet plo&adx 1 kwad-","ratnyj metr (1m
   1 "   wer%iny granej nazy-"," wa#tsq wer%inami mnogo-"," grannika.","","","   naprimer:"
   1 "   uglowaq mera menx%ego"," iz smevnyh uglow nazy-"," waetsq uglom mevdu"," prqmymi.","","","","","","","","","","","","","",""
   1 "   u prawilxnyh 
   1 "   sfera-wse to@ki %ara,"," udalennye ot centra na"," rasstoqnie , rawnoe"," radiusu.","","",""
   1 "   razwernutomu uglu so-","otwetstwuet duga dlinoj","
   1 "   rasstoqnie ot  to@ki","do ploskosti -_to dlina","perpendikulqra,opu&enno-","go iz dannoj to@ki.","","","",""
   1 "   radius cilindra-_to","radius ego osnowanij.","","   wysota cilindra-_to","rasstoqnie mevdu plos-","kostqmi ego osnowanij.",""
   1 "   pustx dan 
   1 "   prizmoj,wpisannoj w"," cilindr,nazywaetsq priz"," ma,osnowaniq kotoroj -"," rawnye mnogougolxniki,"," wpisannye w osnowaniq"," cilindra.ee bokowye"
   1 "   prizma nazywaetsq"," opisannoj,esli ee osno-"," waniq - rawnye mnogou-"
   1 "   postroenie ploskih","        se@enij.","","","    se@enie  wypuklogo"," mnogogrannika estx wy-"," puklyj ploskij  mnogo-"," ugolxnik,wer%iny koto-"
   1 "   poluploskosti nazywa-"," #tsq granqmi,a ograni@i-"," wa#&aq ih prqmaq - reb-"," rom dwugrannogo ugla.",""
   1 "   ploskostx,parallelx-","naq osnowani#,rassekaet","piramidu na dwe figury:","podobnu# ej piramidu i","use@ennu# piramidu.","","  grani use@ennoj pira-"
   1 "   ploskostx 
   1 "   piramidoj,opisannoj","okolo konusa,nazywaetsq","piramida,osnowanie koto-","roj opisano okolo okruv-","nosti osnowaniq,a wer-","%ina sowpadaet s wer%i-","noj konusa."
   1 "   piramida nazywaetsq","
   1 "   ot poluprqmoj na so-","derva&ej ee ploskosti w","zadannu# poluploskostx","movno otlovitx ugol s","zadannoj gradusnoj meroj"
   1 "   osx cilindra-_to prq-","maq,proXodq&aq @erez","centry osnowanij.","","  osewoe se@enie-_to se-","@enie,proXodq&ee @erez","osx cilindra."
   1 "   obxem %ara radiusa R:","","       4","     V=-
   1 "   ob'emy tel   (@astx 1)   obu@a#&ij kurs   1991 god .                    "
   1 "   najdite ob'em.","","      re%enie: "," 
   1 "   mnogogrannye ugly.","","","   dwugrannyj  ugol -_to"," figura ,  obrazowannaq"," dwumq poluploskostqmi s"," ob&ej   ograni@iwa#&ej"," ih prqmoj.",""
   1 "   mera dwugrannogo ugla"," ne zawisit ot wybora"," linejnogo ugla.","","","",""
   1 "   imeq storonu  i wse"," ugly,po teoreme sinusow"," nahodim ostalxnye sto-"," rony.","","   ","","","","","","","","","","","","","","","","",""
   1 "   gruppa aksiom C.",""," C1: kakowa by ni byla","ploskostx , su&estwu#t","to@ki,prinadleva&ie _toj","ploskosti,i,to@ki, ne","prinadleva&ie ej."
   1 "   grani parallelepipe-"," da,  ne ime#&ie  ob&ih"," wer%in, nazywa#tsq "," protiwoleva&imi.","",""
   1 "   esli  u  nih  storony"," odinakowy,to oni rawny.",""
   1 "   dlina okruvnosti.","","esli nitx w forme okruv-","nosti razrezatx i rastq-","nutx za koncy,to dlina","polu@ennogo otrezka i","estx dlina okruvnosti."
   1 "   centralxnyj ugol i","     duga okruvnosti.","","ugol razbiwaet ploskostx","na dwe @asti , kavdaq iz","kotoryh-ploskij ugol.","   ploskie ugly s ob&im"
   1 "   bokowaq powerhnostx","piramidy-summa plo&adej","ee bokowyh granej.","","     teorema.",""
   1 "   bokowaq powerhnostx"," sostoit iz parallelog-"," rammow.","","   wysotoj prizmy nazy-"," waetsq rasstoqnie mev-"," du ploskostqmi ee osno-"," wanij.","","","","","","","","","","","","",""
   1 "   aksiomy stereometrii.","","   stereometriq-_to raz-","del geometrii,w kotorom","izu@a#tsq figury w pros-","transtwe.","","   osnownye figury:"
   1 "   S     - wer%ina","","   aS,BS i t.d.- ","    - bokowye rebra","","","",""
   1 "   2.esli telo razbito"," na @asti ,qwlq#&iesq"," prostymi  telami ,to"," ob'em _togo tela rawen"," summe ob'emow ego @as-"," tej.","","   3.ob'em kuba,rebro"
   1 "   1.rawnye tela ime#t"," rawnye ob'emy.","","","","",""
   1 "   %ar,tak ve,kak ci-"," lindr i konus,qwlqetsq"," figuroj wra&eniq. on"," polu@aetsq wra&eniem"," polukruga wokrug ego"," diametra kak osi.",""
   1 "    zada@a","","  w prqmougolxnom paral-"," lelepipede storony os-"," nowaniq 
   1 "    tetra_dr:","grani-prawilxnye treu-","golxniki,w kavdoj wer%i-","ne shoditsq po tri rebra"," tetra_dr predstawlqet","soboj prawilxnu# pirami-","du."
   1 "    teorema:","","    diagonali parallele-"," pipeda pereseka#tsq  w"," odnoj to@ke  i  to@koj"," perese@eniq    delqtsq"," popolam."
   1 "    powerXnostx cilindra"," sostoit iz osnowanij i"," bokowoj powerXnosti.","","    cilindr movno ras-"," smatriwatx kak telo,"," polu@ennoe pri wra&enii"
   1 "    ploskostx,proXodq&aq"," @erez obrazu#&u# konusa"," i perpendikulqrnaq"," osewomu se@eni#,pro-"," wedennomu @erez _tu"," obrazu#&u#,nazywaetsq"," kasatelxnoj ploskostx#."
   1 "    ploskostx,perpendi-"," kulqrnaq osi konusa,ot-"," sekaet ot nego menx%ij"," konus. ostaw%aqsq @astx"," nazywaetsq use@ennym"," konusom.",""
   1 "    obxem piramidy","","   obxem l#boj piramidy","rawen odnoj treti proiz-","wedeniq plo&adi ee osno-","waniq na wysotu.","" 
   1 "    mnogogrannik.","","   mnogogrannik - telo,"," powerhnostx kotorogo"," sostoit iz kone@nogo"," @isla  ploskih  mnogo-"," ugolxnikow.",""
   1 "    k o n u s","","  konus-_to figura , so-"," stoq&aq iz:","-kruga(osnowaniq konusa)","-to@ki , ne  leva&ej w"," ploskosti _togo kruga"," (wer%iny)"
   1 "    ili:",""," plo&adx kruga rawna"," proizwedeni# kwadrata"," radiusa na @islo pi:","",""
   1 "    dokazatelxstwo:","","r-wypuklyj mnogougolxnik","a
   1 "    V=(S*n)/3","","","   obxem use@ennoj pira-","midy s plo&adqmi osnowa-","nij Q
   1 "    R   180","","radiannaq mera ugla","polu@aetsq iz gradusnoj","umnoveniem na 
   1 "    ABCD  = A
   1 "     teorema","","  wsqkoe se@enie %ara"," ploskostx# estx krug."," centr _togo kruga estx"," osnowanie perpendikulq-"," ra,opu&ennogo iz centra"
   1 "     prawilxnye","    mnogougolxniki.",""," wypuklyj  mnogougolxnik","nazywaetsq prawilxnym,","esli u nego wse storony","i wse ugly rawny.",""
   1 "     ponqtie ob'ema."," ob'em parallelepipeda.","","   telo nazywaetsq pros-"," tym,esli ego movno raz-"," bitx na kone@noe @islo"," treugolxnyh piramid."
   1 "     plo&adx kruga.","","","","","   krug-_to figura,so-"," stoq&aq iz wseX to@ek"," ploskosti,rasstoqnie ot"," kotoryX do dannoj to@ki"," (centra kruga),ne bolx-"
   1 "     perpendikulqr","      i naklonnaq.","","","   perpendikulqr,opu&en-"," nyj iz dannoj to@ki  na"," ploskostx,estx otrezok,"," soedinq#&ij dannu# to@-"," ku s to@koj ploskosti i"," leva&ij na prqmoj, per-"," pendikulqrnoj ploskosti"
   1 "     parallelxnostx","       ploskostej.","","","   dwe ploskosti nazy-"," wa#tsq parallelxnymi,"," esli oni ne pereseka#t-"," sq.",""
   1 "     parallelepiped.","","","   esli osnowanie prizmy"," estx parallelogramm, to"," ona nazywaetsq paralle-"," lepipedom."
   1 "     obxem %ara","    i ego @astej","","  %arowoj segment-@astx","%ara,otsekaemaq ot nego","ploskostx#.",""
   1 "      zada@a.","w naklonnoj prizme pro-","wedeno se@enie,perpendi-","kulqrnoe bokowym rebram","i pereseka#&ee wse rebra","najdite ob'em prizmy,","esli plo&adx se@eniq Q,"
   1 "      zada@a","@erez seredinu wysoty ","piramidy prowedena plos-","kostx,parallelxnaq osno-","wani#. w kakom otno%enii","ona delit obxem piramidy",""
   1 "      re%enie","prowedennaq ploskostx ot","sekaet podobnu# piramidu","ko_fficient podobiq=1/2","zna@it obxemy piramid","otnosqtsq kak (1/2)
   1 "      prizma.","","   prizma -mnogogrannik,"," kotoryj sostoit iz dwuh"," ploskih mnogougolxni"," kow,sowme&aemyh paral-"," lelxnym perenosom,"
   1 "      plo&adi","  prostyX figur","","","","  plo&adx parallelogram-"," ma rawna proizwedeni#"," ego storony na wysotu,"," prowedennu# k _toj sto-"," rone."
   1 "      cilindr","","    cilindr-_to telo,ko-"," toroe sostoit iz dwuX"," krugow,sowme&aemyX pa-"," rallelxnym perenosom,"," i  wseX otrezkow,soedi-"," nq#&iX sootwetstwu#&ie"
   1 "      S = aB * AE","","","","","","",""
   1 "      180","","  radiannaq mera ugla -","-_to otno%enie dugi k","radiusu okruvnosti","    
   1 "       teorema:","","prawilxnyj mnogougolxnik","qwlqetsq wpisannym w ok-","ruvnostx i opisannym","okolo okruvnosti.",""
   1 "       piramida.","","   piramidA - mnogogran-"," nik,kotoryj sostoit iz"," ploskogo mnogougolxnikA"," -osnowaniq piramidy,"," to@ki , ne  leva&ej w"
   1 "       dokazatelxstwo:","","ao,wo-bissektrissy uglow","a i w.","treugolxnik aow rawno-","bedrennyj.","treugolxniki aow i wos"
   1 "       %ar.","","   %ar- telo , sostoq&ee"," iz wseh to@ek prostran-"," stwa , nahodq&ihsq ot"," centra na rasstoqnii,"," ne bolx%em dannogo (ra-"," diusa %ara)." 
   1 "        teorema:","","  summa uglow wypuklogo","    
   1 "        obxemy","   cilindra i konusa","","","","  obxem cilindra rawen","proizwedeni# plo&adi"
   1 "        lomanaq.",""," lomanoj a
   1 "        2","      V=-
   1 "        1","    S= 
   1 "         
   1 !planim25B
   1 !graf25  CX
   1 !PLANIM26BU
   1  zamenim a
   1  wer-","%inami  nazywaetsq  
   1  wektory"," 
   1  w"," urawnenii ploskosti"," qwlq#tsq koordinatami"," wektora,perpendikulqr-"," nogo ploskosti."
   1  w urawnenii ","sfery,prohodq&ej @erez","to@ki (0,0,0),(4,0,0),","(0,4,0) .radius rawen","3 sm.","","wedite zna@eniq 
   1  w urawnenii ","sfery,prohodq&ej @erez","to@ki (0,0,0),(0,0,1),","(0,1,0),(1,0,0) .","","","wedite zna@eniq 
   1  w urawnenii ","ploskosti,kotoraq ","prohodit @erez to@ku","a i perpendikulqrna","prqmoj aw , esli","a(-1,1,2) , w(2,0,1)","","","",""
   1  ugla mevdu","nimi rawen 0.6 .","najdite tretx# storonu.","","",""
   1  ty ne gotow!
   1  to@ki C wyrava#t-"," sq  @erez   koordinaty"," koncow otrezka "," A
   1  to@ki A","nazywaetsq @islo,rawnoe","dline otrezka o
   1  tela  wra&eniq   (@astx 1)   obu@a#&ij kurs   1991 god.                  
   1  t.k."," aa
   1  soot-","wetstwuet duga,dlinoj","       
   1  sm,to powerh-","nostx uweli@itsq na ","54 sm
   1  skre&iwa#&iesq"," prqmye.","","","","","","","","","","","","","","","","","","","",""
   1  s na@alom w"
   1  rawny.","","   <A
   1  prowedena prqmaq";
   1  prohodit","@erez t.A i parallelxna","ploskosti 
   1  prohodit @erez prqmu#","
   1  pro-"," wedem prqmu# AA
   1  podoben r
   1  plo&adi powerhnostej tel   obu@a#&ij kurs   1991 god                     
   1  plo&adi figur   obu@a#&ij kurs   1991 god.                               
   1  pl#s summa","uglow treugolxnika","a
   1  perpendikulqrny,","prqmaq  
   1  perpendikulqrnostx prqmyh i ploskostej   (@astx 2)   1991 god            
   1  perpendikulqrnostx prqmyh i ploskostej   (@astx 1)   1991 god.           
   1  perpendikulqrnostx prqmyh   obu@a#&ij kurs   1991 god                    
   1  perpendikulqrna 
   1  perpendikulqr-","na ploskosti 
   1  perpendi-"," kulqrnye prqmye."," 
   1  peresekatxsq?"
   1  perese-"," ka#tsq.","  dokavem, @to 
   1  parallelxnostx prqmyh i ploskostej   (@astx 2)   1991 god.               
   1  parallelo-";
   1  obxemy tel   (@astx 2)   obu@a#&ij kurs   1991 god.                      
   1  obrazu#t"," ugol 30
   1  nazywaetsq"," ugol mevdu prqmymi 
   1  na-","zywaetsq figura, kotoraq","sostoit iz to@ek a
   1  na ploskostx 
   1  mnogougolxniki   ( @ a s t x  2 )     1 9 9 1   g o d .                  
   1  mnogogranniki   (@astx 3)   obu@a#&ij kurs   1991 god.                   
   1  mnogogranniki   (@astx 2)   obu@a#&ij kurs   1991 god                    
   1  levit"," na polovitelxnoj polu-"," osi 
   1  levit"," na otricatelxnoj polu-"," osi;"
   1  levat w"," odnoj ploskosti.",""," t.k. 
   1  levat w raz-";
   1  imeet plo-"," &adx","","        S = 
   1  imeet dlinu ne","bolx%u#,@em ishodnaq."," analogi@no  perehodim k","lomanoj a
   1  i","ploskostx# kwadrata ","rawen 60
   1  i wysotoj 
   1  i ploskostx# treugolx-","nika rawen 60
   1  i dwa"," ugla 
   1  i  soedinq#&ih  ih","otrezkow  a
   1  i  perpendi-","kulqrna prqmoj 
   1  dekartowy koordinaty i wektory w prostranstwe   (@astx 1)   1991 god     
   1  aksiomy stereometrii   obu@a#&ij kurs   
   1  :1","sledowatelxno obxemy"
   1  3.14 - @islo 'pi',","","  R - radius sfery.","","",""
   1  2*SIN(180
   1  1991 kazanx                     "
   1  1991 kazanx                    
   1  .","otwet wwedite w kwadrat-","nyh santimetrah.","","",""
   1  .","najdite ugol 
   1  .","najdite ob'em paralle-","lepipeda.","","","","","",""
   1  .","","otwet w kwadratnyh","metrah.","","",""
   1  .","","","     re%enie.","","   po   teoreme  sinusow"," nahodim ugol 
   1  .","            2","","","","","","","",""
   1  -wypuklye 
   1  -skre&iwa#&iesq"," prqmye,","   
   1  -prqmye perese-"," @eniq 
   1  -ploskostx,perpen-"," dikulqrnaq s;","   
   1  -parallelxnye"," prqmye,","","   ugol   mevdu  
   1  -","ugolxnikom."
   1  - postoqnnye."
   1  - dlina obrazu#&ej.","","","","",""
   1  - S(aow)"
   1  ,to","","        
   1  ,perese-"," ka#&iesq  w  to@ke  O,"
   1  ,gde","","","   S - plo&adx awsD."
   1  ,esli","ploskostx kruga per-","pendikulqrna 
   1  ,esli aw=8 sm ,","aa
   1  ,esli aw=15 sm ,","aa
   1  ,","","        
   1  ,"," prohodq&ie @erez soot-"," wetstwu#&ie osi , nazy-"," wa#tsq koordinatnymi .","","","","","","","","",""
   1  , BC > AC","","","","","","","","","","","","","","",""
   1  (aw+CD)*Ce ,","        2",""," Ce=aF-wysoty trapecii.","","","","","","","","","","",""
   1   tela wra&eniq   (@astx 2)   obu@a#&ij kurs   1991 god .                 
   1   sow-"," padaet s t. O.","","   analogi@no  opredelq-","#tsq koordinaty 
   1   po  parallelxnym"," prqmym AB i A
   1   pereseka#t-";
   1   per-","pendikulqrna ploskosti 
   1   mnogogranniki.        @astx  1.          
   1    prinadlevit","ploskosti 
   1    parallelxny,"," AB-ob&ij perpendikulqr"," prqmyh 
   1    ob'emy tel   (@astx 1)   obu@a#&ij kurs   1991 god .                   
   1    1991      kazanx            "
   1    1991      kazanx           
   1    +","    S= 
   1    ","   2R
   1     i t.d.",""
   1                        ";
   1            
   1